Tactics Ogre:ROM map
The following article is a ROM map for Tactics Ogre.
Contents
- 1 ROM offsets
- 2 Bank $80
- 2.1 $80/8000 ROM Start
- 2.2 $80/8069 Clear Byte
- 2.3 $80/806A De-activate HDMAs, FBLANK, Clear Screen Destination Registers
- 2.4 $80/8085 NMI Handler
- 2.5 $80/8091 ???
- 2.6 $80/8134 Jump Table for $05BF
- 2.7 $80/8142 Jump Table
- 2.8 $80/8166 Jump Table Entry #$00
- 2.9 $80/8D6A ???
- 2.10 $80/8D72 ???
- 2.11 $80/8FA8 ???
- 2.12 $80/9D32 DMA Subroutine
- 2.13 $80/9D81 Long Jump to VRAM Clear
- 2.14 $80/9D89 VRAM Clear
- 2.15 $80/9DA7 Long Jump to the WRAM-Clear-DMA
- 2.16 $80/9DAB WRAM-Clear-DMA
- 2.17 $80/9DC8 Long Jump to Write Empty Tilemap in WRAM
- 2.18 $80/9DCC Write Empty Tilemap in WRAM
- 2.19 $80/9E7B Long Jump to Decompress Data and DMA to VRAM
- 2.20 $80/9E83 Decompress Data and DMA to VRAM
- 2.21 $80/9E85 Transfer color
- 2.22 $80/9EEB VRAM DMA with accompanying Data Bytes
- 2.23 $80/9F24 Long Jump to VRAM DMA
- 2.24 $80/9F2C VRAM DMA
- 2.25 $80/9FB7 ?
- 2.26 $80/9FD0 VRAM DMA
- 2.27 $80/A127 Long Jump to Activate NMI and Auto-Joypad Read
- 2.28 $80/A12F Activate NMI and Auto-Joypad Read
- 2.29 $80/A14A Long Jump to Deactivate NMI, Auto-Joypad and HDMAs
- 2.30 $80/A152 Deactivate NMI, Auto-Joypad and HDMAs
- 2.31 $80/A162 Long Jump to Enable VBLANK IRQ
- 2.32 $80/A16A Enable VBLANK IRQ
- 2.33 $80/A170 Long Jump to Disable IRQ
- 2.34 $80/A178 Disable IRQ
- 2.35 $80/A18A ?
- 2.36 $80/A192 ?
- 2.37 $80/A19F Execute code built in WRAM
- 2.38 $80/A1B6 Write Executable Code in WRAM
- 2.39 $80/A1E4 RTL
- 2.40 $80/A405 Long Jump to the Tilemap Rectangle Writer
- 2.41 $80/A409 Tilemap Rectangle Writer
- 2.42 $80/ADCB Calculate Address in Tilemap
- 2.43 $80/AEF2 Load Music?
- 2.44 $80/AF7E Actual NMI Handler
- 2.45 $80/B135 Update Graphics Settings Buffer Registers
- 2.46 $80/B26D Update Graphic Setup Registers
- 2.47 $80/B32B VRAM DMA Pipeline
- 2.48 $80/B3D8 ?
- 2.49 $80/B40B Joypad Data Fetching
- 2.50 $80/B4C8 An IRQ-Handler
- 2.51 $80/B4D7 Possibility where IRQ-Handler $80/B4C8 can jump to
- 2.52 $80/B545 Long Jump to Clear Graphic Setup Registers
- 2.53 $80/B54D Clear Graphic Setup Registers
- 2.54 $80/B66B Long Jump to Clear Registers, clear WRAM Bank $7F
- 2.55 $80/B673 Clear Registers, clear WRAM Bank $7F
- 2.56 $80/B6CD Set up $7F Clear DMA
- 2.57 $80/B6DF Set up VRAM Clear DMA
- 3 Bank $81
- 4 Bank $82
- 4.1 $82/98AA Battle Stats Menu - Buffer Character's data
- 4.2 $82/9BC8 ?
- 4.3 $82/AE91 Battle Stats Menu - Tilemap builder
- 4.4 $82/B1DA Clear BG3 Tilemap
- 4.5 $82/B206 Create Clear Tilemaps (for Battle Stats Menu?)
- 4.6 $82/B235 Battle Stats Menu - transfer the buffered tilemaps into VRAM
- 4.7 $82/F810 ?
- 4.8 $82/FAAC ?
- 5 Bank $83
- 6 Bank $84
- 7 Bank $86
- 8 Bank $88
- 9 Bank $89
- 10 Bank $8F
- 11 Bank $99
- 12 Bank $9A
- 13 Bank $9B
- 14 Bank $9C
- 14.1 $9C/8B49 Jump Table for $05C0
- 14.2 $9C/8BA7 ?
- 14.3 $9C/8C31 Quest Logo?
- 14.4 $9C/9053 Transfer colors to CGRAM buffer
- 14.5 $9C/9234 ?
- 14.6 $9C/98A1 Title Screen BG1 Tilemap builder
- 14.7 $9C/9B15 Decompress Data and transfer it to VRAM in a Row
- 14.8 $9C/9B57 Data List for $9C/9B15
- 14.9 $9C/9C64 Screen fade in?
- 14.10 $9C/9C7B ?
- 14.11 $9C/9CAB Replace three colors in several palettes
- 14.12 $9C/9CDE Wait to the end of HBLANK, then FBLANK
- 14.13 $9C/C598 Test SRAM and store in it
- 14.14 $9C/C7D3 Stuff with the NES-Style Controller Registers
- 15 Bank $9D
- 16 Bank $9E
- 17 Bank $CB
ROM offsets
These are ROM offsets for the starting points of each section (all in hex), pretty sure it's headerless (latest ROM revision, has Lakmir's translation patch applied to it):
40c33 - Spell Areas
40cc9 - Spell Function Bytes
40fb7 - Spell Accuracy Types (Auto-Hit, Dex-Based, etc.)
4104d - Spell Cost Type (Whether it eats HP or MP, how much, etc.)
41179 - Spell Formula Table
4133B - Spell Elements (Fire, Air, Virtue, etc.)
42703 - Character Sprite pointers
429e3 - Character Name pointers
42ad2 - Job IDs
42bc2 - Starting Elements
42cb0 - Starting Alignments
42dbf - Number of Magic Slots
42ead - Starting Level
42f9b - Starting HP
430bb - HP Growth
4314b - Starting MP
4326b - MP Growth
432fb - Starting Strength
4338b - Strength Growth
4341b - Starting Vitality
434ab - Vitality Growth
4353b - Starting Intelligence
435cb - Intelligence Growth
4365b - Starting Mentality
436eb - Mentality Growth
4377b - Starting Agility
4380b - Agility Growth
4389b - Starting Dexterity
4392b - Dexterity Growth
43a4c - Class Weight Penalties
43add - Physical Resistance
43b6e - Air Resistance
43bff - Fire Resistance
43c90 - Earth Resistance
43d21 - Water Resistance
43db2 - Virtue Resistance
43e43 - Bane Resistance
43ef4 - Attack+ Capability
440b1 - Species Table
441a1 - Basic Indirect Attack Type
442b0 - Magic Set that can be equipped
443a0 - Class Special Attacks (Slot 1)
4448f - Class Special Attacks (Slot 2)
4457e - Class Special Attacks (Slot 3)
4466d - Class Special Attacks (Slot 4)
4475b - Movement Types
44849 - Movement Rates
44937 - Starting Loyalties
44a26 - Weather Tolerance
451da - Item Types
452ca - Item Elements
453ba - Weapon Handedness
454aa - Item Equip Slot Locations (Finger, Head, etc.)
45655 - Item Weights
4572e - Item Strength Modifiers (Atk. Power)
4580e - Item Intelligence Modifiers
458ee - Item Agility Modifiers
459ce - Item Dexterity Modifiers
45aae - Item Vitality Modifiers
45b8e - Item Mentality Modifiers
45c6e - Item Luck Modifiers
45d4e - Item Physical Resistance (Def. Power) (signed)
45e2e - Item Air Resistance (signed)
45f0e - Item Fire Resistance (signed)
45fee - Item Earth Resistance (signed)
460ce - Item Water Resistance (signed)
461ae - Item Virtue Resistance (signed)
4628e - Item Bane Resistance (signed)
4646f - Item Prices (multiplied by 10 in-game)
46612 - Item Strength Raise at Level Up
466e4 - Item Intelligence Raise at Level Up
467b4 - Item Agility Raise at Level Up
46884 - Item Dexterity Raise at Level Up
46956 - Item Vitality Raise at Level Up
46a26 - Item Mentality Raise at Level Up
46af6 - Item Luck Raise at Level Up
46bc6 - Item Special Effects (Stuns on hit, Anti-Dragon, etc.)
46cb6 - Item Special Skills (used in the Item menu)
46d86 - Item Status Guards (immunity to petrification, etc.)
46e76 - Item Passive Effects (wearer can fly, HP regen, etc.)
47047 - Spell MP cost/Targeting Information
47172 - Spell Schools (Hahnela, Ishtar, DragonGod, etc.)
47208 - Spell Ranges
4729e - Special Spell Conditions #1 (Summons, Line-of-sight spells, whether equipment is needed, etc.)
4732f - Spell Prices (multiplied by 10 in-game)
47431 - Spell Set Modifiers
474a1 - How the caster behaves when using the spell/skill. NOTE: Each half of the bytes here specifies one skill.
474f1 - Special Spell Conditions #2 (If equipment is needed, this specifies the type (swords, spears, etc.) NOTE: Each half of the bytes here specifies one skill.
ea0dc - Class Grids (determines what you can change into)
ebba7 - Denim's Base Class
ebca1 - Denim's Initial Equipment (Slot 1)
ebcac - Denim's Initial Equipment (Slot 2)
ebcb7 - Denim's Initial Equipment (Slot 3)
ebcc2 - Denim's Initial Equipment (Slot 4)
ebc94 - Denim's Initial Spells (doesn't insert into Magic menu, need to use a JMP routine to get anything out of it)
ed61e - Item Shop pointers/data
ed6d9 - Magic Shop pointers/data
f3195 - Job Stat Requirements (what's needed to change into that job stat-wise, might also cover alignment but I couldn't tell from a glance).
Bank $80
This is all taken from the Japanese V1.0 version
$80/8000 ROM Start
$00/8000 18 CLC ; Switch to Native Mode $00/8001 FB XCE $00/8002 78 SEI ; Disable Interrupts $00/8003 D8 CLD ; Deactivate Decimal Mode (if accidentally turned on) $00/8004 4B PHK ; Push Bank Register $00/8005 AB PLB ; Pull Data Bank Register $00/8006 E2 20 SEP #$20 $00/8008 C2 10 REP #$10 $00/800A A2 FF 1F LDX #$1FFF ; Set Stack to $7E:1FFF $00/800D 9A TXS $00/800E F4 00 00 PEA $0000 ; Direct Page Register = #$0000 $00/8011 2B PLD $00/8012 9C 00 42 STZ $4200 ; Deactivate NMI / Auto-Joypad $00/8015 9C AF 05 STZ $05AF ; Backup for $4200? $00/8018 20 6A 80 JSR $806A ; De-activate HDMAs, FBLANK, Clear Screen Destination Registers
Clear $7E:2000 to $7E:FFFF
$00/801B A0 00 E0 LDY #$E000 ; DMA Size: #$E000 $00/801E 8C 05 43 STY $4305 $00/8021 A0 00 20 LDY #$2000 ; WRAM Destination: $(7E)2000 $00/8024 18 CLC ; WRAM-Destination: Bank $7E $00/8025 A2 69 80 LDX #$8069 ; DMA Source Address: $00/8069 (ROM: $0000.0069 $00/8028 A9 00 LDA #$00 $00/802A 22 A7 9D 80 JSL $809DA7 ; Long Branch to the DMA setup and activation
$00/802E A9 01 LDA #$01 ; Activate Fast ROM $00/8030 8D 0D 42 STA $420D $00/8033 22 00 80 8F JSL $8F8000 ; Jump to ??? (Sound Setup?) $00/8037 64 59 STZ $59 ; ??? $00/8039 64 EA STZ $EA $00/803B C6 EA DEC $EA ; ??? ($EA = #$FF) $00/803D A9 01 LDA #$01 $00/803F 85 51 STA $51 ; ??? ($51 = #$01) $00/8041 78 SEI ; Disable Interrupts (again) $00/8042 D8 CLD ; Deactivate Decimal Mode (again) $00/8043 4B PHK ; Push Bank Register $00/8044 AB PLB ; Pull Data Bank Register $00/8045 E2 20 SEP #$20 $00/8047 C2 10 REP #$10 $00/8049 A2 00 02 LDX #$0200 $00/804C 8E 5F 05 STX $055F ; ??? $00/804F 9C 00 42 STZ $4200 ; Deactivate NMI / Auto-Joypad (again) $00/8052 9C AF 05 STZ $05AF ; Backup for $4200? $00/8055 20 6A 80 JSR $806A ; De-activate HDMAs, FBLANK, Clear Screen Destination Registers $00/8058 A9 01 LDA #$01 ; Activate Fast ROM (again) $00/805A 8D 0D 42 STA $420D $00/805D AF F0 FF 00 LDA $00FFF0 ; = #$FF $00/8061 8F F3 00 00 STA $0000F3 ; ??? $00/8065 5C 91 80 80 JMP $808091 ; Jump to ???
$80/8069 Clear Byte
$00/8069 00 ; Clear Byte for $80/801B
$80/806A De-activate HDMAs, FBLANK, Clear Screen Destination Registers
$00/806A 9C 0C 42 STZ $420C ; De-activate HDMAs $00/806D 9C B0 05 STZ $05B0 ; Backup for $420C? $00/8070 9C 86 05 STZ $0586 ; Backup for $420C? $00/8073 A9 80 LDA #$80 $00/8075 8D 00 21 STA $2100 ; FBLANK $00/8078 8D 87 05 STA $0587 ; Backup for $2100 $00/807B 8D 6A 05 STA $056A ; Backup for $2100 $00/807E 9C 2C 21 STZ $212C ; Clear Main Screen Destinations $00/8081 9C 2D 21 STZ $212D ; Clear Subscreen Destinations $00/8084 60 RTS
$80/8085 NMI Handler
$00/8085 5C 7E AF 80 JMP $80AF7E ; NMI Handler ("Jump to" Fast ROM)
$80/8091 ???
$80/8091 22 4A A1 80 JSL $80A14A ; Long-Jump to Deactivation of NMI, Auto-Joypad & HDMAs $80/8095 A2 FF 1F LDX #$1FFF ; Set Stack to $7E:1FFF $80/8098 9A TXS $80/8099 F4 00 00 PEA $0000 ; Direct Page Register = #$0000 $80/809C 2B PLD $80/809D 4B PHK ; Push Bank Register $80/809E AB PLB ; Pull Data Bank Register $80/809F 22 B6 A1 80 JSL $80A1B6 ; Jump to ???
$80/8134 Jump Table for $05BF
$80/8134 7B TDC ; Clear 16-bit A $80/8135 AD BF 05 LDA $05BF [$80:05BF] A:0000 X:001B Y:01A1 P:envMxdiZc $80/8138 0A ASL A A:0009 X:001B Y:01A1 P:envMxdizc $80/8139 AA TAX A:0012 X:001B Y:01A1 P:envMxdizc $80/813A FC 42 81 JSR ($8142,x)[$80:9CFD] A:0012 X:0012 Y:01A1 P:envMxdizc
$80/8142 Jump Table
67 81 Entry #$00 82 81 Entry #$01 C5 81 Entry #$02 02 85 Entry #$03 F1 88 Entry #$04 66 81 Entry #$05 - RTS 22 83 Entry #$06 EC 88 Entry #$07 C9 9C Entry #$08 FD 9C Entry #$09 66 81 Entry #$0A - RTS 66 81 Entry #$0B - RTS 2F 84 Entry #$0C 66 81 Entry #$0D - RTS 66 81 Entry #$0E - RTS F6 88 Entry #$10 2E 83 Entry #$11 8B 81 Entry #$12
$80/8166 Jump Table Entry #$00
Is just a RTS
$80/8D6A ???
$80/8D6A 8B PHB ; Buffer Program Bank $80/8D6B 4B PHK ; Set $80 as Program Bank $80/8D6C AB PLB $80/8D6D 20 72 8D JSR $8D72 ; ??? $80/8D70 AB PLB ; Restore Program Bank $80/8D71 6B RTL
$80/8D72 ???
$80/8D72 AD C2 05 LDA $05C2 ; ??? $80/8D75 89 01 BIT #$01 ; ??? Is Bit 0 in $5C2 set? $80/8D77 F0 16 BEQ $16 ; [$8D8F] Branch if not $80/8D79 AD 87 05 LDA $0587 ; Load $2100 Buffer $80/8D7C 29 0F AND #$0F ; Remove the FBLANK Bit, leave the Screen brightness $80/8D7E 18 CLC ; Turn Screen Brightness up by two degrees $80/8D7F 69 02 ADC #$02 $80/8D81 C9 0F CMP #$0F ; Check if it surpassed the maximum $80/8D83 90 05 BCC $05 ; [$8D8A] Branch if it didn't $80/8D85 9C C2 05 STZ $05C2 ; ??? $80/8D88 A9 0F LDA #$0F ; If brightness+2 surpasses the limit, set to max brightness $80/8D8A 8D 87 05 STA $0587 ; Store it in $2100 buffer and then exit $80/8D8D 80 18 BRA $18 ; [$8DA7] YOU CAN MAKE THIS SHORTER- remove the line above and branch to $8DA4 $80/8D8F 89 02 BIT #$02 ; ??? Is Bit 1 in $5C2 set? $80/8D91 F0 14 BEQ $14 ; [$8DA7] ??? Exit if not $80/8D93 AD 87 05 LDA $0587 ; Load $2100 Buffer $80/8D96 30 07 BMI $07 ; [$8D9F] Branch if FBLANK is active
Code is missing here
$80/8D9F 9C C2 05 STZ $05C2 ; ??? $80/8DA2 A9 80 LDA #$80 ; Activate FBLANK $80/8DA4 8D 87 05 STA $0587 $80/8DA7 60 RTS
$80/8FA8 ???
$80/8FA8 A9 43 LDA #$43 ; DMA Options: HDMA, write 2 registers twice each $80/8FAA 8D 70 43 STA $4370 $80/8FAD A9 21 LDA #$21 ; CGRAM Address (+ Data) Register (writes both twice) $80/8FAF 8D 71 43 STA $4371 $80/8FB2 A2 00 B0 LDX #$B000 ; Source Address: $7E/B000 $80/8FB5 8E 72 43 STX $4372 $80/8FB8 A9 7E LDA #$7E $80/8FBA 8D 74 43 STA $4374 $80/8FBD A9 7E LDA #$7E ; HDMA Indirect Address Bank: $7E $80/8FBF 8D 77 43 STA $4377 $80/8FC2 A9 80 LDA #$80 ; Set the bit for this DMA Channel in the HDMA activation flag buffer $80/8FC4 0C B0 05 TSB $05B0 $80/8FC7 A9 43 LDA #$43 ; DMA Options: HDMA, write 2 registers twice each $80/8FC9 8D 10 43 STA $4310 $80/8FCC A9 11 LDA #$11 ; BG3 H/V Scroll Registers $80/8FCE 8D 11 43 STA $4311 $80/8FD1 A2 A0 B0 LDX #$B0A0 ; Source Address: $7E/B0A0 $80/8FD4 8E 12 43 STX $4312 $80/8FD7 A9 7E LDA #$7E $80/8FD9 8D 14 43 STA $4314 $80/8FDC A9 00 LDA #$00 ; HDMA Indirect Address Bank: $00 $80/8FDE 8D 17 43 STA $4317 $80/8FE1 A9 02 LDA #$02 ; Set the bit for this DMA Channel in the HDMA activation flag buffer $80/8FE3 0C B0 05 TSB $05B0 $80/8FE6 A9 43 LDA #$43 ; DMA Options: HDMA, write 2 registers twice each $80/8FE8 8D 60 43 STA $4360 $80/8FEB A9 0F LDA #$0F ; BG2 H/V Scroll Registers $80/8FED 8D 61 43 STA $4361 $80/8FF0 A2 20 B0 LDX #$B020 ; Source Address: $7E/B020 $80/8FF3 8E 62 43 STX $4362 $80/8FF6 A9 7E LDA #$7E $80/8FF8 8D 64 43 STA $4364 $80/8FFB A9 00 LDA #$00 ; HDMA Indirect Address Bank: $00 $80/8FFD 8D 67 43 STA $4367 $80/9000 A9 40 LDA #$40 ; Set the bit for this DMA Channel in the HDMA activation flag buffer $80/9002 0C B0 05 TSB $05B0 $80/9005 A9 43 LDA #$43 ; DMA Options: HDMA, write 2 registers twice each $80/9007 8D 50 43 STA $4350 $80/900A A9 0D LDA #$0D ; BG1 H/V Scroll Registers $80/900C 8D 51 43 STA $4351 $80/900F A2 20 B0 LDX #$B020 ; Source Address: $7E/B020 $80/9012 8E 52 43 STX $4352 $80/9015 A9 7E LDA #$7E $80/9017 8D 54 43 STA $4354 $80/901A A9 00 LDA #$00 ; HDMA Indirect Address Bank: $00 $80/901C 8D 57 43 STA $4357 $80/901F A9 20 LDA #$20 ; Set the bit for this DMA Channel in the HDMA activation flag buffer $80/9021 0C B0 05 TSB $05B0 $80/9024 A2 00 B0 LDX #$B000 A:0020 X:B020 Y:001E P:envMxdiZC $80/9027 8E FC 16 STX $16FC [$80:16FC] A:0020 X:B000 Y:001E P:eNvMxdizC $80/902A A2 20 B0 LDX #$B020 A:0020 X:B000 Y:001E P:eNvMxdizC $80/902D 8E FE 16 STX $16FE [$80:16FE] A:0020 X:B020 Y:001E P:eNvMxdizC $80/9030 8E 00 17 STX $1700 [$80:1700] A:0020 X:B020 Y:001E P:eNvMxdizC $80/9033 A2 A0 B0 LDX #$B0A0 A:0020 X:B020 Y:001E P:eNvMxdizC $80/9036 8E 02 17 STX $1702 [$80:1702] A:0020 X:B0A0 Y:001E P:eNvMxdizC $80/9039 20 BA 96 JSR $96BA [$80:96BA] A:0020 X:B0A0 Y:001E P:eNvMxdizC $80/903C 20 4A 96 JSR $964A [$80:964A] A:1700 X:B040 Y:000C P:eNvMxdizC $80/903F EE FB 16 INC $16FB [$80:16FB] A:01A4 X:1744 Y:035C P:envMxdiZC $80/9042 60 RTS A:01A4 X:1744 Y:035C P:envMxdizC
$80/9D32 DMA Subroutine
Destination has to be set before this Subroutine is called
$80/9D32 8D 04 43 STA $4304 ; A: Source Bank (8 bit) $80/9D35 8E 02 43 STX $4302 ; X: Source Address (16 bit) $80/9D38 8C 05 43 STY $4305 ; Y: Number of Bytes to transfer $80/9D3B A9 00 LDA #$00 ; DMA options $80/9D3D 8D 00 43 STA $4300 $80/9D40 A9 01 LDA #$01 ; Activate DMA $80/9D42 8D 0B 42 STA $420B $80/9D45 60 RTS
$80/9D81 Long Jump to VRAM Clear
A: Source Bank of the Clear Byte (8 bit)
X: Source Address of the Clear Byte (16 bit)
Y: Destination VRAM Address (16 bit)
$80/9D81 8B PHB ; Buffer Program Bank $80/9D82 4B PHK ; Set $80 as Program Bank $80/9D83 AB PLB $80/9D84 20 89 9D JSR $9D89 ; VRAM Clear $80/9D87 AB PLB ; Restore Program Bank $80/9D88 6B RTL
$80/9D89 VRAM Clear
$80/9D89 8D 04 43 STA $4304 ; A: Source Bank (8 bit) $80/9D8C 8E 02 43 STX $4302 ; X: Source Address (16 bit) $80/9D8F 8C 16 21 STY $2116 ; Y: Destination VRAM Address (16 bit) $80/9D92 A9 80 LDA #$80 ; Increment after writing $2119 $80/9D94 8D 15 21 STA $2115 $80/9D97 A9 09 LDA #$09 ; FIXED TRANSFER, 16 bit Transfer $80/9D99 8D 00 43 STA $4300 $80/9D9C A9 18 LDA #$18 ; DMA Destination: $2118, VRAM $80/9D9E 8D 01 43 STA $4301 $80/9DA1 A9 01 LDA #$01 ; Activate DMA $80/9DA3 8D 0B 42 STA $420B $80/9DA6 60 RTS
$80/9DA7 Long Jump to the WRAM-Clear-DMA
$80/9DA7 20 AB 9D JSR $9DAB ; Setup of the rest of the DMA and activation $80/9DAA 6B RTL
$80/9DAB WRAM-Clear-DMA
This Subroutine is half a setup for a DMA and starts the DMA. The first half of the setup has to be done before this Subroutine gets called. A call can be found at $80/801B. This is a fixed Transfer, so it's used for Clear Up DMAs. Furthermore, due to it's construction it is fixed to WRAM addresses. Before this subroutine is called, there are additional values that are loaded into certain registers:
A: Source Bank (8 bit)
X: Source Address (16 bit)
Y: Destination WRAM Address (16 bit)
Carry Bit Set: WRAM Bank $7F / Carry Bit Clear: WRAM Bank $7E
$80/9DAB 8D 04 43 STA $4304 ; A: Source Bank (8 bit) $80/9DAE 8E 02 43 STX $4302 ; X: Source Address (16 bit) $80/9DB1 8C 81 21 STY $2181 ; Y: Destination WRAM Address (16 bit) $80/9DB4 2A ROL A ; Roll Carry-Bit in A $80/9DB5 8D 83 21 STA $2183 ; If carry bit was set: Bank $7F, if clear: $7E $80/9DB8 A9 08 LDA #$08 ; FIXED TRANSFER $80/9DBA 8D 00 43 STA $4300 $80/9DBD A9 80 LDA #$80 ; DMA to Register $2180 --> to the WRAM address previously set up $80/9DBF 8D 01 43 STA $4301 $80/9DC2 A9 01 LDA #$01 ; Activate DMA $80/9DC4 8D 0B 42 STA $420B $80/9DC7 60 RTS
$80/9DC8 Long Jump to Write Empty Tilemap in WRAM
$80/9DC8 20 CC 9D JSR $9DCC ; Write Empty Tilemap in WRAM $80/9DCB 6B RTL
$80/9DCC Write Empty Tilemap in WRAM
This subroutine is used to write the same double-byte over and over into a bigger space. This is used to write empty tilemaps in WRAM.
X contains the number of bytes to do
Y contains the destination address (the destination bank has to be set as Data Bank before this subroutine is called)
A (16-bit) contains the 16-bit value that should be written
This subroutine has to ways of doing this: Either it simply works off $20 byte in one step, or it does less if it has to do less then $20 byte. So, whatever amount you give it, it clears the big bunch in $20 byte steps first and then does the rest in the second way of doing it. The first part of the program is about distinguishing which method is to use.
This subroutine is actually quite well done: At $80/9DE4, it uses the remaining number of bytes to do which is in X as an index for a jump table, the jump table then lets the program jump right into the middle of the whole Store commands that start at $9E0D - that's the reason why it starts at $001E,y and not at $0000,y!
$80/9DCC D4 00 PEI ($00) ; Buffer $00 on stack $80/9DCE E0 21 00 CPX #$0021 ; Check if the number of bytes-to-do is more than #$20 $80/9DD1 90 0F BCC $0F ; [$9DE2] Branch if not $80/9DD3 48 PHA ; Buffer the Write-Byte $80/9DD4 A9 20 00 LDA #$0020 ; Set Number of Bytes to do in $00 $80/9DD7 85 00 STA $00 $80/9DD9 68 PLA ; Restore the Write-Byte $80/9DDA 20 0D 9E JSR $9E0D [$80:9E0D] A:0000 X:0080 Y:BDC4 P:envmxdIZC $80/9DDD E0 21 00 CPX #$0021 ; Repeat this procedure if there are still more than $20 bytes to do $80/9DE0 B0 F8 BCS $F8 ; [$9DDA] $80/9DE2 86 00 STX $00 ; Set the remaining Number of Bytes to do in $00 $80/9DE4 FC EB 9D JSR ($9DEB,x) ; Jump to the Jump Table which redirects into the part at $9E0D $80/9DE7 FA PLX ; Restore Original $00 and Exit $80/9DE8 86 00 STX $00 $80/9DEA 60 RTS
- Code is missing here
- What is missing here is most likely a list of 2-byte-long Branch Commands where the first one branches to $9E3A, the second to $9E3C...
$80/9E0D 99 1E 00 STA $001E,y ; Write the Write-Byte into it's destination $80/9E10 99 1C 00 STA $001C,y $80/9E13 99 1A 00 STA $001A,y $80/9E16 99 18 00 STA $0018,y $80/9E19 99 16 00 STA $0016,y $80/9E1C 99 14 00 STA $0014,y $80/9E1F 99 12 00 STA $0012,y $80/9E22 99 10 00 STA $0010,y $80/9E25 99 0E 00 STA $000E,y $80/9E28 99 0C 00 STA $000C,y $80/9E2B 99 0A 00 STA $000A,y $80/9E2E 99 08 00 STA $0008,y $80/9E31 99 06 00 STA $0006,y $80/9E34 99 04 00 STA $0004,y $80/9E37 99 02 00 STA $0002,y $80/9E3A 99 00 00 STA $0000,y $80/9E3D 48 PHA ; Buffer the Write-Byte $80/9E3E 8A TXA ; Decrease the number of Bytes-to-do according to the number of transfered bytes $80/9E3F 38 SEC $80/9E40 E5 00 SBC $00 $80/9E42 AA TAX $80/9E43 98 TYA ; Increase the where-to-write-address according to the number of transfered bytes $80/9E44 18 CLC $80/9E45 65 00 ADC $00 $80/9E47 A8 TAY $80/9E48 68 PLA ; Restore the Write-Byte $80/9E49 60 RTS
$80/9E7B Long Jump to Decompress Data and DMA to VRAM
A and X contain 24-bit-Address of the Compressed Data.
Y contains the VRAM Destination
$20-$22 contains a 24-bit-Address where to tempstore the decompressed Data.
$80/9E7B 8B PHB ; Preserve Data Bank $80/9E7C 4B PHK ; Change Data Bank to this $80/9E7D AB PLB $80/9E7E 20 83 9E JSR $9E83 ; Decompress Data and DMA to VRAM $80/9E81 AB PLB ; Restore Data Bank $80/9E82 6B RTL
$80/9E83 Decompress Data and DMA to VRAM
A and X contain 24-bit-Address of the Compressed Data.
Y contains the VRAM Destination
$20-$22 contains a 24-bit-Address where to tempstore the decompressed Data.
$80/9E83 5A PHY ; Push VRAM Destination on Stack $80/9E84 22 E5 F9 81 JSL $81F9E5 ; Decompress Data $80/9E88 A6 0E LDX $0E ; Load number of decompressed bytes $80/9E8A 86 0C STX $0C ; Set it as number of bytes to transfer to VRAM $80/9E8C A9 80 LDA #$80 ; VRAM transfer settings ($2115) $80/9E8E 85 0E STA $0E $80/9E90 A6 20 LDX $20 ; DMA Source Address $80/9E92 A5 22 LDA $22 ; DMA Source Bank $80/9E94 7A PLY ; VRAM Destination $80/9E95 4C 2C 9F JMP $9F2C ; VRAM DMA - it's JMP, not JSR, so here's no RTS
$80/9E85 Transfer color
This subroutine transfers a part (or all) of the CGRAM buffer to CGRAM.
A contains the CGRAM Destination
X's content doesn't matter, but gets changed during this subroutine
Y contains the number of bytes to transfer
$80/9EB5 8B PHB ; Preserve Data Bank $80/9EB6 4B PHK ; Change Data Bank to this $80/9EB7 AB PLB $80/9EB8 48 PHA ; Buffer Original A value $80/9EB9 AD 6A 05 LDA $056A ; Load $2100 Buffer $80/9EBC 0A ASL A ; Roll MSB (FBLANK Flag) in the Carry Bit $80/9EBD 68 PLA ; Restore Original A value $80/9EBE 90 24 BCC $24 ; [$9EE4] Branch if FBLANK isn't active $80/9EC0 9C 0C 42 STZ $420C ; Deactivate HDMAs $80/9EC3 8D 21 21 STA $2121 ; Original A = CGRAM Destination $80/9EC6 C2 20 REP #$20 ; 16-bit A $80/9EC8 29 FF 00 AND #$00FF ; Remove if there was something in the hidden 8-bit $80/9ECB 0A ASL A ; Multiply A by 2 (each color is 2 bytes in size) $80/9ECC 69 4B 12 ADC #$124B ; Add the Offset of the CGRAM buffer, so A contains now the WRAM address of the first color $80/9ECF AA TAX ; Transfer to X for the upcoming DMA Setup Subroutine $80/9ED0 E2 20 SEP #$20 $80/9ED2 A9 22 LDA #$22 ; DMA Destination: $(21)22 = CGRAM $80/9ED4 8D 01 43 STA $4301 $80/9ED7 A9 00 LDA #$00 ; DMA Source Bank: $00 $80/9ED9 20 32 9D JSR $9D32 ; Setup and Execute DMA to CGRAM $80/9EDC AD 86 05 LDA $0586 ; Reactivate HDMAs $80/9EDF 8D 0C 42 STA $420C $80/9EE2 80 05 BRA $05 ; [$9EE9] Exit
Code is missing here
$80/9EE9 AB PLB ; Restore Data Bank $80/9EEA 6B RTL
$80/9EEB VRAM DMA with accompanying Data Bytes
Important: Whenever and from wherever this subroutine is called, the next few bytes AFTER the JSL $809EEB is Data for this subroutine. So, the first part of this subroutine is changing the Jump-Back-Address on stack so the program does not accidentally try to interpret these data bytes as code, but skip them.
The rest is the regular VRAM DMA subroutine at $80/9F2C
The Data following this Subroutine's called are structured as follows:
2 Bytes - DMA Source Address
1 Byte - DMA Source Bank
2 Bytes - VRAM Destination Address
2 Bytes - Number of Bytes
$80/9EEB 8B PHB ; Push Program Bank $80/9EEC C2 21 REP #$21 ; 16 bit A, clear Carry $80/9EEE A3 02 LDA $02,s ; Load the address from stack, where to return when the program reaches a RTL $80/9EF0 AA TAX ; Copy it into X $80/9EF1 69 07 00 ADC #$0007 ; Add 7 to the return address - skip 7 bytes $80/9EF4 83 02 STA $02,s ; Store it back on stack $80/9EF6 E2 20 SEP #$20 ; 8 bit A $80/9EF8 A3 04 LDA $04,s ; Load the Bank Byte from the Return address $80/9EFA 48 PHA ; Set it as Program Bank for now $80/9EFB AB PLB $80/9EFC D4 0C PEI ($0C) ; Preserve current values in $0C-$0F on Stack $80/9EFE D4 0E PEI ($0E) $80/9F00 A9 80 LDA #$80 ; VRAM settings (for $2115) $80/9F02 85 0E STA $0E $80/9F04 BD 03 00 LDA $0003,x ; DMA Source Bank $80/9F07 48 PHA ; Push it on stack, it gets pulled right before the Subroutine Jump $80/9F08 C2 20 REP #$20 $80/9F0A BD 06 00 LDA $0006,x ; Number of Bytes to transfer $80/9F0D 85 0C STA $0C $80/9F0F BC 04 00 LDY $0004,x ; VRAM Destination Address $80/9F12 BD 01 00 LDA $0001,x ; DMA Source Address $80/9F15 AA TAX $80/9F16 E2 20 SEP #$20 $80/9F18 68 PLA ; Pull Source Bank $80/9F19 20 2C 9F JSR $9F2C ; VRAM DMA $80/9F1C FA PLX ; Restore old values of $0C-$0F $80/9F1D 86 0E STX $0E $80/9F1F FA PLX $80/9F20 86 0C STX $0C $80/9F22 AB PLB ; Pull Program Bank $80/9F23 6B RTL
$80/9F24 Long Jump to VRAM DMA
This jumps to the VRAM DMA subroutine, but stores the current program bank on stack and restores the old one afterwards.
$80/9F24 8B PHB $80/9F25 4B PHK $80/9F26 AB PLB $80/9F27 20 2C 9F JSR $9F2C ; VRAM DMA $80/9F2A AB PLB $80/9F2B 6B RTL
$80/9F2C VRAM DMA
This Subroutine executes an DMA to VRAM.
First it checks if currently FBLANK is active. Then it checks if a HDMA is active. If it is, it pauses the HDMA for the time the DMA gets prepared and executed. The following preparations have been made in order to make this subroutine work properly:
A contains the DMA Source Bank
X contains the DMA Source Address
Y contains the VRAM Destination Address
$0C/$0D contain the number of bytes to transfer
$0E contains the VRAM settings (for register $2115)
$80/9F2C 48 PHA ; Preserve the Original A content on Stack $80/9F2D AD 6A 05 LDA $056A ; Is currently a FBLANK active? $80/9F30 10 38 BPL $38 ; [$9F6A] branch if not - If not, don't execute the DMA NOW, but put it in Pipeline $80/9F32 68 PLA ; Restore Original A content... $80/9F33 EB XBA ; ... and put it in the other half of the Accumulator $80/9F34 AD 86 05 LDA $0586 ; Are any HDMAs active/planned? $80/9F37 F0 0D BEQ $0D ; [$9F46] If not, skip the next part - immediate execution of the DMA $80/9F39 9C 0C 42 STZ $420C ; Remove HDMA activation flags $80/9F3C 20 46 9F JSR $9F46 ; Execute the stuff you were branched to before as a subroutine now $80/9F3F AD 86 05 LDA $0586 ; ... afterwards, restore the HDMA-Flags again $80/9F42 8D 0C 42 STA $420C $80/9F45 60 RTS $80/9F46 A9 01 LDA #$01 ; DMA Settings $80/9F48 8D 00 43 STA $4300 $80/9F4B A9 18 LDA #$18 ; Destination: $2118 - VRAM $80/9F4D 8D 01 43 STA $4301 $80/9F50 EB XBA ; Restore Original A value $80/9F51 8C 16 21 STY $2116 ; Original Y Value: VRAM Address $80/9F54 8E 02 43 STX $4302 ; Original X Value: Source Address $80/9F57 8D 04 43 STA $4304 ; Original A Value: Source Bank $80/9F5A A6 0C LDX $0C ; $0C contains the number of bytes to transfer $80/9F5C 8E 05 43 STX $4305 $80/9F5F A5 0E LDA $0E ; $0E contains the VRAM transfer settings $80/9F61 8D 15 21 STA $2115 $80/9F64 A9 01 LDA #$01 ; Activate DMA $80/9F66 8D 0B 42 STA $420B $80/9F69 60 RTS $80/9F6A A3 01 LDA $01,s ; Load the last byte on stack (Original A) without removing it from stack $80/9F6C C9 7E CMP #$7E ; is the DMA source Bank $7E? $80/9F6E D0 18 BNE $18 ; [$9F88] branch if not $80/9F70 E4 5C CPX $5C ; ??? $80/9F72 90 14 BCC $14 ; [$9F88] $80/9F74 E4 5E CPX $5E ; ??? $80/9F76 B0 10 BCS $10 ; [$9F88] $80/9F78 C2 21 REP #$21 ; A = 16 bit, Carry cleared $80/9F7A 8A TXA ; DMA Source Address is now in A $80/9F7B 65 0C ADC $0C ; Add the number of Bytes transfered $80/9F7D 3A DEC A ; Decrement it by one $80/9F7E C5 5E CMP $5E ; ??? $80/9F80 90 03 BCC $03 ; [$9F85]
Code is missing here
$80/9F85 1A INC A ; ??? $80/9F86 85 5C STA $5C ; ??? $80/9F88 C2 21 REP #$21 ; A = 16 bit, Carry cleared $80/9F8A AD C5 0E LDA $0EC5 ; ??? $80/9F8D 65 0C ADC $0C ; ??? $80/9F8F 8D C5 0E STA $0EC5 ; ??? $80/9F92 DA PHX ; Push DMA Source Address from Stack $80/9F93 AD C7 0E LDA $0EC7 ; Load Number of already occupied Pipeline Slots $80/9F96 29 FF 00 AND #$00FF ; This Number is 8 bit in size $80/9F99 0A ASL A ; multiply by 2 - each pipeline entry is 2 bytes in size $80/9F9A AA TAX ; Transfer in X as Index $80/9F9B 98 TYA ; Y still held the VRAM Destination $80/9F9C 9D 49 10 STA $1049,x ; Put in Pipeline - VRAM Destination ($2116) $80/9F9F A5 0C LDA $0C $80/9FA1 9D C9 0E STA $0EC9,x ; Put in Pipeline - Data Size ($4305) $80/9FA4 68 PLA ; Get DMA Source Address (see $80/9F92) $80/9FA5 9D 89 0F STA $0F89,x ; Put in Pipeline - Source Address ($4302) $80/9FA8 E2 20 SEP #$20 $80/9FAA 68 PLA $80/9FAB 9D 0A 11 STA $110A,x ; Put in Pipeline - Source Bank ($4304) $80/9FAE A5 0E LDA $0E $80/9FB0 9D 09 11 STA $1109,x ; Put in Pipeline - VRAM Settings ($2115) $80/9FB3 EE C7 0E INC $0EC7 ; Increment Number of occupied Pipeline Slots $80/9FB6 60 RTS
$80/9FB7 ?
$80/9FB7 8B PHB ; Buffer Program Bank $80/9FB8 4B PHK ; Change Program Bank $80/9FB9 AB PLB $80/9FBA 48 PHA ; Buffer A $80/9FBB AD 6A 05 LDA $056A ; $2100 Buffer - FBLANK / Screen Brightness $80/9FBE 10 34 BPL $34 ; [$9FF4] Branch if there's no FBLANK active $80/9FC0 68 PLA ; Put A where the coming subroutine can use it as Source Bank $80/9FC1 EB XBA $80/9FC2 9C 0C 42 STZ $420C ; Deactivate HDMA for now $80/9FC5 20 D0 9F JSR $9FD0 ; VRAM DMA $80/9FC8 AD 86 05 LDA $0586 ; Reactivate HDMA $80/9FCB 8D 0C 42 STA $420C $80/9FCE 80 54 BRA $54 ; [$A024] CLC, PLB, RTL
$80/9FD0 VRAM DMA
Y: VRAM Destination $2116
X: Source Address
B (hidden 8bit of A): Source Bank
$0C: Number of bytes
$80/9FD0 A9 01 LDA #$01 ; DMA Transfer style $80/9FD2 8D 00 43 STA $4300 $80/9FD5 A9 18 LDA #$18 ; DMA Destination: $2118 VRAM $80/9FD7 8D 01 43 STA $4301 $80/9FDA EB XBA ; Source Bank is in the hidden 8 bit part of Accumulator $80/9FDB 8C 16 21 STY $2116 ; Y: VRAM Destination $80/9FDE 8E 02 43 STX $4302 ; X: Source Address $80/9FE1 8D 04 43 STA $4304 ; Source Bank $80/9FE4 A6 0C LDX $0C ; Number of Bytes to transfer $80/9FE6 8E 05 43 STX $4305 $80/9FE9 A9 80 LDA #$80 ; VRAM transfer settings $80/9FEB 8D 15 21 STA $2115 $80/9FEE A9 01 LDA #$01 ; Activate DMA $80/9FF0 8D 0B 42 STA $420B $80/9FF3 60 RTS
$80/A127 Long Jump to Activate NMI and Auto-Joypad Read
$80/A127 8B PHB ; Buffer Data Bank Register on Stack $80/A128 4B PHK ; Set Bank Register as Data Bank Register $80/A129 AB PLB $80/A12A 20 2F A1 JSR $A12F ; Activate NMI and Auto-Joypad Read $80/A12D AB PLB ; Pull Original Data Bank Register $80/A12E 6B RTL
$80/A12F Activate NMI and Auto-Joypad Read
$80/A12F AD 10 42 LDA $4210 ; Load (and thus, remove) the NMI Flag $80/A132 A9 81 LDA #$81 ; Activate NMI and Auto-Joypad Read $80/A134 8D 00 42 STA $4200 $80/A137 0C AF 05 TSB $05AF ; Update Buffer accordingly $80/A13A 60 RTS
$80/A14A Long Jump to Deactivate NMI, Auto-Joypad and HDMAs
$80/A14A 8B PHB ; Buffer Data Bank Register on Stack $80/A14B 4B PHK ; Set Bank Register as Data Bank Register $80/A14C AB PLB $80/A14D 20 52 A1 JSR $A152 ; Jump to Deactivation of NMI, Auto-Joypad & HDMAs $80/A150 AB PLB ; Pull Original Data Bank Register $80/A151 6B RTL
$80/A152 Deactivate NMI, Auto-Joypad and HDMAs
$80/A152 9C 00 42 STZ $4200 ; Deactivate NMI / Auto-Joypad $80/A155 9C AF 05 STZ $05AF ; Backup for $4200? $80/A158 9C 0C 42 STZ $420C ; De-activate HDMAs $80/A15B 9C B0 05 STZ $05B0 ; Backup for $420C? $80/A15E 9C 86 05 STZ $0586 ; Backup for $420C? $80/A161 60 RTS
$80/A162 Long Jump to Enable VBLANK IRQ
$80/A162 8B PHB ; Buffer Data Bank Register on Stack $80/A163 4B PHK ; Set Bank Register as Data Bank Register $80/A164 AB PLB $80/A165 20 6A A1 JSR $A16A ; Enable VBLANK IRQ $80/A168 AB PLB ; Pull Original Data Bank Register $80/A169 6B RTL
$80/A16A Enable VBLANK IRQ
$80/A16A A9 20 LDA #$20 $80/A16C 0C AF 05 TSB $05AF $80/A16F 60 RTS
$80/A170 Long Jump to Disable IRQ
$80/A170 8B PHB ; Buffer Data Bank Register on Stack $80/A171 4B PHK ; Set Bank Register as Data Bank Register $80/A172 AB PLB $80/A173 20 78 A1 JSR $A178 ; Disable IRQ $80/A176 AB PLB ; Pull Original Data Bank Register $80/A177 6B RTL
$80/A178 Disable IRQ
$80/A178 A9 30 LDA #$30 ; TRB removes the set bits in the Accumulator from... $80/A17A 1C AF 05 TRB $05AF ; ... the value in the memory address ($05AF = $4200 Buffer) $80/A17D 60 RTS
$80/A18A ?
$80/A18A 8B PHB ; Buffer Data Bank Register on Stack $80/A18B 4B PHK ; Set Data Bank to $80 $80/A18C AB PLB $80/A18D 20 92 A1 JSR $A192 ; ??? (Wait for NMI) $80/A190 AB PLB ; Restore Data Bank $80/A191 6B RTL
$80/A192 ?
$80/A192 A9 80 LDA #$80 ; ??? (Sets bit 7 in $05BD) $80/A194 1C BD 05 TRB $05BD $80/A197 AD B9 05 LDA $05B9 ; ??? (Load Framecounter?) $80/A19A CD B9 05 CMP $05B9 ; Wait for the next NMI $80/A19D F0 FB BEQ $FB ; [$A19A]
After this, the next subroutine gets executed, too.
$80/A19F Execute code built in WRAM
$80/A19F A9 80 LDA #$80 ; ??? (Sets bit 7 in $05BD) $80/A1A1 0C BD 05 TSB $05BD $80/A1A4 22 D9 05 00 JSL $0005D9 ; Jump and execute the code built in WRAM $80/A1A8 60 RTS
$80/A1B6 Write Executable Code in WRAM
This Subroutine writes executable Code in WRAM, starting at $05D9.
It writes 22 E4 A1 80 ("JSL $80A1E4") five times one after another with a final $6B ("RTL").
$80/A1B6 8B PHB ; Buffer Data Bank Register on Stack $80/A1B7 F4 00 00 PEA $0000 ; Set Data Bank Register to $00 $80/A1BA AB PLB $80/A1BB AB PLB $80/A1BC A2 D9 05 LDX #$05D9 ; Start writing at $0005D9 $80/A1BF A0 05 00 LDY #$0005 ; ??? (Sets up some counter) $80/A1C2 A9 22 LDA #$22 ; #$22 = "JSL" $80/A1C4 9D 00 00 STA $0000,x ; Store in WRAM $80/A1C7 C2 20 REP #$20 $80/A1C9 A9 E4 A1 LDA #$A1E4 ; Store the Address $80/A1CC 9D 01 00 STA $0001,x ; Store in WRAM $80/A1CF E2 20 SEP #$20 $80/A1D1 A9 80 LDA #$80 ; Store the Bank-part of the Address $80/A1D3 9D 03 00 STA $0003,x ; Store in WRAM $80/A1D6 E8 INX ; Increment the Store Index $80/A1D7 E8 INX $80/A1D8 E8 INX $80/A1D9 E8 INX $80/A1DA 88 DEY ; Decrement loop counter $80/A1DB D0 E5 BNE $E5 ; [$A1C2] $80/A1DD A9 6B LDA #$6B ; Store the final #$6B (RTL) $80/A1DF 9D 00 00 STA $0000,x $80/A1E2 AB PLB ; Pull Original Data Bank Register $80/A1E3 6B RTL
$80/A1E4 RTL
$80/A19F can jump here (via $0005D9). A standard "do nothing, just exit right away"
$80/A1E4 6B RTL
$80/A405 Long Jump to the Tilemap Rectangle Writer
If this subroutine should be used while the program pointer is currently on a different bank
$80/A405 20 09 A4 JSR $A409 ; See below $80/A408 6B RTL
$80/A409 Tilemap Rectangle Writer
This subroutine transfers a line of tilemap entries into a rectangle inside the tilemap buffer.
$00 contains the rectangle's number of columns
$01 is used as counter for the current column
$02 contains the rectangle's number of rows
$03 is used as counter for the current row
X contains the Index to the Load Address (the Bank has to be adjusted before this subroutine is called)
Y Contains the Index where to write - the rest of the write address has to be set up in $20-$22
$80/A409 A5 02 LDA $02 ; Copy Row/Column number into counter registers that can be decremented $80/A40B 85 03 STA $03 $80/A40D A5 00 LDA $00 $80/A40F 85 01 STA $01 $80/A411 5A PHY ; Push the write index on Stack (the starting point of a new line of the rectangle) $80/A412 C2 20 REP #$20 $80/A414 BD 00 00 LDA $0000,x ; Read Byte $80/A417 C9 FF FF CMP #$FFFF ; If in the read data is a #$FFFF, it does not overwrite that tile $80/A41A F0 02 BEQ $02 ; [$A41E] Leave out the write command if $80/A41C 97 20 STA [$20],y ; Write into the Tilemap Buffer $80/A41E E2 20 SEP #$20 $80/A420 E8 INX ; Increment Read & Write Index $80/A421 E8 INX $80/A422 C8 INY $80/A423 C8 INY $80/A424 C6 01 DEC $01 ; Decrement column/(=tile) counter $80/A426 D0 EA BNE $EA ; [$A412] Loop if not all tiles in that row are done yet $80/A428 C2 21 REP #$21 ; 16-bit A + Clear Carry $80/A42A 68 PLA ; Pull the starting point of the rectangle's new line from stack $80/A42B 69 40 00 ADC #$0040 ; Add #$40 - move one line down $80/A42E A8 TAY ; Transfer new starting point into Y (so it can be used + Pushed on stack again) $80/A42F E2 20 SEP #$20 $80/A431 C6 03 DEC $03 ; Decrement Row Counter $80/A433 D0 D8 BNE $D8 ; [$A40D] Loop if not all rows are done yet $80/A435 60 RTS
$80/ADCB Calculate Address in Tilemap
This seems to be about calculation of an Address in a Tilemap. You put the number of a tile's row number in A and the columns number in X, and it calculates the actual offset for it. The mathmatical formula is:
New A and New X = Old A * #$40 + Old X
$80/ADCB DA PHX ; Push the Column number on stack for now $80/ADCC C2 20 REP #$20 ; Make Accumuleta great again $80/ADCE 29 FF 00 AND #$00FF ; Remove whatever was still in the hidden 8-bit of the Accumulator $80/ADD1 EB XBA ; A * #$40 (sixty-four) $80/ADD2 4A LSR A $80/ADD3 4A LSR A $80/ADD4 63 01 ADC $01,s ; Add Column number (that is on stack) $80/ADD6 FA PLX ; Remove Column number from stack (not needed any more) $80/ADD7 AA TAX ; Replace it with the calculation's result $80/ADD8 E2 20 SEP #$20 $80/ADDA 6B RTL
$80/AEF2 Load Music?
Replacing the A5 59 ("LDA $59") at $AF03 with A9 10 ("LDA #$10"), this loaded a different song in the Title Demo and other scenes in the game.
$80/AEF2 8B PHB A:000D X:905F Y:000D P:envMxdizc $80/AEF3 4B PHK A:000D X:905F Y:000D P:envMxdizc $80/AEF4 AB PLB A:000D X:905F Y:000D P:envMxdizc $80/AEF5 85 59 STA $59 [$00:0059] A:000D X:905F Y:000D P:eNvMxdizc $80/AEF7 20 4C AF JSR $AF4C [$80:AF4C] A:000D X:905F Y:000D P:eNvMxdizc $80/AEFA 90 07 BCC $07 [$AF03] A:000D X:905F Y:000D P:envMxdizc
Code is left out here
$80/AF03 A5 59 LDA $59 [$00:0059] A:000D X:905F Y:000D P:envMxdizc $80/AF05 F0 0B BEQ $0B [$AF12] A:000D X:905F Y:000D P:envMxdizc $80/AF07 22 03 80 8F JSL $8F8003[$8F:8003] A:000D X:905F Y:000D P:envMxdizc $80/AF0B A9 01 LDA #$01 A:0002 X:33CC Y:D686 P:envMxdizc $80/AF0D 85 F5 STA $F5 [$00:00F5] A:0001 X:33CC Y:D686 P:envMxdizc $80/AF0F 20 30 AF JSR $AF30 [$80:AF30] A:0001 X:33CC Y:D686 P:envMxdizc $80/AF12 AB PLB A:0000 X:33CC Y:D686 P:envMxdiZc $80/AF13 6B RTL A:0000 X:33CC Y:D686 P:envMxdizc
$80/AF7E Actual NMI Handler
$80/AF7E C2 30 REP #$30 ; A/X/Y = 16 bit (to make sure everything is put on stack) $80/AF80 48 PHA $80/AF81 8B PHB $80/AF82 0B PHD $80/AF83 DA PHX $80/AF84 5A PHY $80/AF85 4B PHK $80/AF86 AB PLB $80/AF87 A9 00 00 LDA #$0000 $80/AF8A 5B TCD $80/AF8B E2 20 SEP #$20 $80/AF8D AD 10 42 LDA $4210 ; Remove NMI Flag $80/AF90 A9 80 LDA #$80 $80/AF92 8D 00 21 STA $2100 ; FBLANK $80/AF95 AD BD 05 LDA $05BD ; ??? $80/AF98 10 03 BPL $03 ; ??? $80/AF9A 4C D2 B0 JMP $B0D2 ; ??? $80/AF9D 20 C2 B2 JSR $B2C2 ; ???
OAM Update
$80/AFA0 AD B0 05 LDA $05B0 ; ??? $80/AFA3 8D 86 05 STA $0586 $80/AFA6 9C 0C 42 STZ $420C ; Deactivate HDMAs $80/AFA9 AD 40 05 LDA $0540 ; If $0540 is empty, don't update OAM? $80/AFAC F0 29 BEQ $29 ; [$AFD7] $80/AFAE A2 00 00 LDX #$0000 ; OAM Address $80/AFB1 8E 02 21 STX $2102 $80/AFB4 9C 04 43 STZ $4304 ; Source Bank: $00 $80/AFB7 AE 45 05 LDX $0545 $80/AFBA 8E 02 43 STX $4302 ; Source Address: $0545 $80/AFBD A9 04 LDA #$04 ; DMA Destination: $2104 (OAM) $80/AFBF 8D 01 43 STA $4301 $80/AFC2 A2 20 02 LDX #$0220 ; Transfer $220 Bytes - both OAM Tables $80/AFC5 8E 05 43 STX $4305 $80/AFC8 A9 00 LDA #$00 ; DMA Transfer settings $80/AFCA 8D 00 43 STA $4300 $80/AFCD A9 01 LDA #$01 ; Activate DMA $80/AFCF 8D 0B 42 STA $420B $80/AFD2 9C 40 05 STZ $0540 ; Clear OAM Update Flag $80/AFD5 80 03 BRA $03 ; [$AFDA] --- ??? $80/AFD7 20 01 B1 JSR $B101 ; ??? $80/AFDA 20 35 B1 JSR $B135 ; ??? $80/AFDD 20 D8 B3 JSR $B3D8 ; CGRAM Update $80/AFE0 20 2B B3 JSR $B32B ; VRAM DMA Pipeline $80/AFE3 20 7B B3 JSR $B37B ; ??? $80/AFE6 AD 86 05 LDA $0586 ; Reactivate HDMAs $80/AFE9 8D 0C 42 STA $420C $80/AFEC 20 6D B2 JSR $B26D ; Update Graphic Setup Registers $80/AFEF AD 6A 05 LDA $056A ; Load the (old) Screen Settings $80/AFF2 2C 12 42 BIT $4212 ; Wait for the next HBLANK to end $80/AFF5 70 FB BVS $FB ; [$AFF2] $80/AFF7 2C 12 42 BIT $4212 $80/AFFA 50 FB BVC $FB ; [$AFF7] $80/AFFC 8D 00 21 STA $2100 ; Update Screen brightness $80/AFFF 20 0B B4 JSR $B40B ; Joypad Data Fetching $80/B002 22 61 80 88 JSL $888061 ; ??? $80/B006 22 00 80 88 JSL $888000 ; ??? $80/B00A 22 18 81 88 JSL $888118 ; ??? $80/B00E AD BA 05 LDA $05BA $80/B011 F0 04 BEQ $04 ; [$B017]
Missing Code
$80/B017 AE BB 05 LDX $05BB $80/B01A F0 04 BEQ $04 ; [$B020]
Missing Code
$80/B020 20 40 B2 JSR $B240 ; ??? $80/B023 22 73 81 88 JSL $888173 ; ??? $80/B027 A6 32 LDX $32 ; ??? $80/B029 86 34 STX $34 ; ??? $80/B02B AE F0 05 LDX $05F0 ; Update V Timer - At which Scan Line an IRQ should come $80/B02E 8E 09 42 STX $4209 $80/B031 AD 11 42 LDA $4211 ; Load (and remove) IRQ Flag $80/B034 AD AF 05 LDA $05AF ; Update NMI/IRQ/Auto-Joypad Flags $80/B037 8D 00 42 STA $4200 $80/B03A EE B9 05 INC $05B9 ; ??? (Frame counter!? Flag register?) $80/B03D AD BD 05 LDA $05BD ; ??? (Check Flag register?) $80/B040 89 C0 BIT #$C0 ; ??? (If bit 6 is set, CGRAM needs an update; bit 7 yet unknown) $80/B042 D0 1C BNE $1C ; [$B060] $80/B044 AD 38 00 LDA $0038 ; ??? $80/B047 F0 17 BEQ $17 ; [$B060]
Missing Code
$80/B060 A5 37 LDA $37 [$00:0037] A:0000 X:00DB Y:0000 P:envMxdIZc $80/B062 F0 62 BEQ $62 [$B0C6] A:0003 X:00DB Y:0000 P:envMxdIzc $80/B064 AD BD 05 LDA $05BD [$80:05BD] A:0003 X:00DB Y:0000 P:envMxdIzc $80/B067 89 40 BIT #$40 A:0000 X:00DB Y:0000 P:envMxdIZc $80/B069 D0 5B BNE $5B [$B0C6] A:0000 X:00DB Y:0000 P:envMxdIZc $80/B06B D4 00 PEI ($00) ; Buffer $00-$0F and $20-$2B on stack $80/B06D D4 02 PEI ($02) $80/B06F D4 04 PEI ($04) $80/B071 D4 06 PEI ($06) $80/B073 D4 08 PEI ($08) $80/B075 D4 0A PEI ($0A) $80/B077 D4 0C PEI ($0C) $80/B079 D4 0E PEI ($0E) $80/B07B D4 20 PEI ($20) $80/B07D D4 22 PEI ($22) $80/B07F D4 24 PEI ($24) $80/B081 D4 26 PEI ($26) $80/B083 D4 28 PEI ($28) $80/B085 D4 2A PEI ($2A) $80/B087 58 CLI A:0000 X:00DB Y:0000 P:envMxdIZc $80/B088 A5 37 LDA $37 [$00:0037] A:0000 X:00DB Y:0000 P:envMxdiZc $80/B08A 89 01 BIT #$01 A:0003 X:00DB Y:0000 P:envMxdizc $80/B08C F0 04 BEQ $04 [$B092] A:0003 X:00DB Y:0000 P:envMxdizc $80/B08E 22 5F 80 84 JSL $84805F[$84:805F] A:0003 X:00DB Y:0000 P:envMxdizc
Missing Code
$80/B09C FA PLX ; Restore $00-$0F and $20-$2B from stack $80/B09D 86 2A STX $2A $80/B09F FA PLX $80/B0A0 86 28 STX $28 $80/B0A2 FA PLX $80/B0A3 86 26 STX $26 $80/B0A5 FA PLX $80/B0A6 86 24 STX $24 $80/B0A8 FA PLX $80/B0A9 86 22 STX $22 $80/B0AB FA PLX $80/B0AC 86 20 STX $20 $80/B0AE FA PLX $80/B0AF 86 0E STX $0E $80/B0B1 FA PLX $80/B0B2 86 0C STX $0C $80/B0B4 FA PLX $80/B0B5 86 0A STX $0A $80/B0B7 FA PLX $80/B0B8 86 08 STX $08 $80/B0BA FA PLX $80/B0BB 86 06 STX $06 $80/B0BD FA PLX $80/B0BE 86 04 STX $04 $80/B0C0 FA PLX $80/B0C1 86 02 STX $02 $80/B0C3 FA PLX $80/B0C4 86 00 STX $00 $80/B0C6 22 0C 80 8F JSL $8F800C[$8F:800C] A:0000 X:0000 Y:000C P:envMxdiZc
Missing Code
$80/B0CA C2 30 REP #$30 ; Restore everything from Stack $80/B0CC 7A PLY $80/B0CD FA PLX $80/B0CE 2B PLD $80/B0CF AB PLB $80/B0D0 68 PLA $80/B0D1 40 RTI ; End Interrupt Handler
$80/B135 Update Graphics Settings Buffer Registers
I'm not sure, but it looks like you can buffer values for the screen settings in buffer registers, so that they get transfered in the next frame to their destination. Because this seems to be the subroutine that makes these values step up in queue.
$80/B135 AE 91 05 LDX $0591 ; Update $210D Buffer $80/B138 8E 71 05 STX $0571 $80/B13B AE 93 05 LDX $0593 ; Update $210E Buffer $80/B13E 8E 73 05 STX $0573 $80/B141 AE 95 05 LDX $0595 ; Update $210F Buffer $80/B144 8E 75 05 STX $0575 $80/B147 AE 97 05 LDX $0597 ; Update $2110 Buffer $80/B14A 8E 77 05 STX $0577 $80/B14D AE 99 05 LDX $0599 ; Update $2111 Buffer $80/B150 8E 79 05 STX $0579 $80/B153 AE 9B 05 LDX $059B ; Update $2112 Buffer $80/B156 8E 7B 05 STX $057B $80/B159 AE 9D 05 LDX $059D ; Update $2113 Buffer $80/B15C 8E 7D 05 STX $057D $80/B15F AE 9F 05 LDX $059F ; Update $2114 Buffer $80/B162 8E 7F 05 STX $057F $80/B165 AE 8B 05 LDX $058B ; Update $2107/8 Buffer $80/B168 8E 6D 05 STX $056D $80/B16B AE 8D 05 LDX $058D ; Update $2109/A Buffer $80/B16E 8E 6F 05 STX $056F $80/B171 AD 87 05 LDA $0587 ; Update $2100 Buffer $80/B174 8D 6A 05 STA $056A $80/B177 AD 89 05 LDA $0589 ; Update $2105 Buffer $80/B17A 8D 6B 05 STA $056B $80/B17D AD 88 05 LDA $0588 ; Update $2101 Buffer $80/B180 8D 6C 05 STA $056C $80/B183 AE AC 05 LDX $05AC ; Update $2132 Buffer - R?/G? $80/B186 8E 83 05 STX $0583 $80/B189 AD AE 05 LDA $05AE ; Update $2132 Buffer - V? $80/B18C 8D 85 05 STA $0585 $80/B18F AD AA 05 LDA $05AA ; Update $2130 Buffer $80/B192 8D 81 05 STA $0581 $80/B195 AD AB 05 LDA $05AB ; ??? $80/B198 8D 82 05 STA $0582 ; ??? $80/B19B AE EE 05 LDX $05EE ; Update $4209/A Buffer $80/B19E 8E F0 05 STX $05F0 $80/B1A1 AD 8A 05 LDA $058A ; Update $2106 $80/B1A4 8D 06 21 STA $2106 $80/B1A7 AD 5F 17 LDA $175F [$80:175F] A:0000 X:00DC Y:0000 P:envMxdIZC $80/B1AA F0 43 BEQ $43 [$B1EF] A:0000 X:00DC Y:0000 P:envMxdIZC
Code is missing here
$80/B1EF AD FB 16 LDA $16FB [$80:16FB] A:0000 X:00DC Y:0000 P:envMxdIZC $80/B1F2 F0 18 BEQ $18 [$B20C] A:0055 X:00DC Y:0000 P:envMxdIzC $80/B1F4 AE FC 16 LDX $16FC [$80:16FC] A:0055 X:00DC Y:0000 P:envMxdIzC $80/B1F7 8E 72 43 STX $4372 [$80:4372] A:0055 X:5555 Y:0000 P:envMxdIzC $80/B1FA AE 02 17 LDX $1702 [$80:1702] A:0055 X:5555 Y:0000 P:envMxdIzC $80/B1FD 8E 12 43 STX $4312 [$80:4312] A:0055 X:5555 Y:0000 P:envMxdIzC $80/B200 AE FE 16 LDX $16FE [$80:16FE] A:0055 X:5555 Y:0000 P:envMxdIzC $80/B203 8E 62 43 STX $4362 [$80:4362] A:0055 X:5555 Y:0000 P:envMxdIzC $80/B206 AE 00 17 LDX $1700 [$80:1700] A:0055 X:5555 Y:0000 P:envMxdIzC $80/B209 8E 52 43 STX $4352 [$80:4352] A:0055 X:5555 Y:0000 P:envMxdIzC $80/B20C AF 87 BE 7E LDA $7EBE87[$7E:BE87] A:0055 X:5555 Y:0000 P:envMxdIzC $80/B210 10 29 BPL $29 [$B23B] A:0000 X:5555 Y:0000 P:envMxdIZC
Code is missing here
$80/B23B A5 36 LDA $36 [$00:0036] A:0000 X:5555 Y:0000 P:envMxdIZC $80/B23D 85 37 STA $37 [$00:0037] A:0000 X:5555 Y:0000 P:envMxdIZC $80/B23F 60 RTS
$80/B26D Update Graphic Setup Registers
$80/B26D AD 6B 05 LDA $056B ; BG Mode $80/B270 8D 05 21 STA $2105 $80/B273 AD 6C 05 LDA $056C ; Sprite sizes $80/B276 8D 01 21 STA $2101 $80/B279 AE A6 05 LDX $05A6 ; Main Screen/Subscreen Destination (16 bit!) $80/B27C 8E 2C 21 STX $212C $80/B27F AE 8F 05 LDX $058F ; BG1-4 Tileset Addresses (16 bit!) $80/B282 8E 0B 21 STX $210B $80/B285 AE 6D 05 LDX $056D ; BG1/2 Tilemap Address $80/B288 8E 07 21 STX $2107 $80/B28B AE 6F 05 LDX $056F ; BG3/4 Tilemap Address $80/B28E 8E 09 21 STX $2109 $80/B291 AE 81 05 LDX $0581 ; Color Addition Select $80/B294 8E 30 21 STX $2130 $80/B297 AD 85 05 LDA $0585 ; Fixed Color Data $80/B29A 8D 32 21 STA $2132 $80/B29D AD 84 05 LDA $0584 ; Fixed Color Data $80/B2A0 8D 32 21 STA $2132 $80/B2A3 AD 83 05 LDA $0583 ; Fixed Color Data $80/B2A6 8D 32 21 STA $2132 $80/B2A9 A0 00 00 LDY #$0000 ; Update the BG Scroll registers $80/B2AC A2 71 05 LDX #$0571 $80/B2AF B5 00 LDA $00,x $80/B2B1 99 0D 21 STA $210D,y $80/B2B4 B5 01 LDA $01,x $80/B2B6 99 0D 21 STA $210D,y $80/B2B9 E8 INX $80/B2BA E8 INX $80/B2BB C8 INY $80/B2BC C0 08 00 CPY #$0008 $80/B2BF D0 EE BNE $EE ; [$B2AF] $80/B2C1 60 RTS
$80/B32B VRAM DMA Pipeline
$80/B32B AD C7 0E LDA $0EC7 ; Are there any VRAM DMAs in the pipeline? $80/B32E F0 44 BEQ $44 ; [$B374] If not, exit $80/B330 A9 01 LDA #$01 ; DMA Settings $80/B332 8D 00 43 STA $4300 $80/B335 A9 18 LDA #$18 ; DMA Destination: $2118 $80/B337 8D 01 43 STA $4301 $80/B33A A0 00 00 LDY #$0000 $80/B33D BE C9 0E LDX $0EC9,y ; DMA Data Size $80/B340 8E 05 43 STX $4305 $80/B343 BE 89 0F LDX $0F89,y ; DMA Adress $80/B346 8E 02 43 STX $4302 $80/B349 B9 0A 11 LDA $110A,y ; DMA Bank $80/B34C 8D 04 43 STA $4304 $80/B34F B9 09 11 LDA $1109,y ; VRAM Transfer Setting $80/B352 8D 15 21 STA $2115 $80/B355 BE 49 10 LDX $1049,y ; VRAM Destination $80/B358 8E 16 21 STX $2116 $80/B35B A9 01 LDA #$01 ; Activate DMA $80/B35D 8D 0B 42 STA $420B $80/B360 C8 INY ; Increment Index $80/B361 C8 INY $80/B362 CE C7 0E DEC $0EC7 ; Decrement number of occupied Pipelines entries $80/B365 D0 D6 BNE $D6 ; [$B33D] Loop until all are done $80/B367 A2 00 00 LDX #$0000 $80/B36A 8E D6 16 STX $16D6 ; ??? $80/B36D 8E D8 16 STX $16D8 ; ??? $80/B370 A6 5A LDX $5A ; ??? $80/B372 86 5C STX $5C ; ??? $80/B374 A2 00 00 LDX #$0000 ; ??? $80/B377 8E C5 0E STX $0EC5 ; ??? $80/B37A 60 RTS
$80/B3D8 ?
$80/B3D8 AD BD 05 LDA $05BD ; ??? $80/B3DB 89 40 BIT #$40 ; ??? If bit 6 in $05BD is set, this forces a CGRAM update $80/B3DD D0 05 BNE $05 ; [$B3E4] $80/B3DF AD 49 12 LDA $1249 ; Is "Update CGRAM" Flag set? $80/B3E2 F0 26 BEQ $26 ; [$B40A] Exit if not $80/B3E4 9C 21 21 STZ $2121 ; CGRAM Destination: $00 $80/B3E7 A9 22 LDA #$22 ; DMA Destination: $2122 (= CGRAM) $80/B3E9 8D 01 43 STA $4301 $80/B3EC A2 00 02 LDX #$0200 ; Transfer #$200 Byte $80/B3EF 8E 05 43 STX $4305 $80/B3F2 A2 4B 12 LDX #$124B ; Source: $00124B (CGRAM Buffer) $80/B3F5 8E 02 43 STX $4302 $80/B3F8 A9 00 LDA #$00 $80/B3FA 8D 04 43 STA $4304 $80/B3FD A9 00 LDA #$00 ; DMA Settings $80/B3FF 8D 00 43 STA $4300 $80/B402 A9 01 LDA #$01 ; Activate DMA $80/B404 8D 0B 42 STA $420B $80/B407 9C 49 12 STZ $1249 ; Clear "Update CGRAM" Flag $80/B40A 60 RTS
$80/B40B Joypad Data Fetching
$80/B40B AD 12 42 LDA $4212 ; Load PPU-Status $80/B40E 4A LSR A ; Move Bit 0 (Auto-Joypad Status) into Carry $80/B40F B0 FA BCS $FA ; [$B40B] Loop until Auto-Joypad Read is done $80/B411 A0 00 00 LDY #$0000 $80/B414 A2 00 00 LDX #$0000 $80/B417 B9 18 42 LDA $4218,y $80/B41A 29 0F AND #$0F $80/B41C D0 40 BNE $40 ; [$B45E] I think this is a security measure; if this isn't 0, something's wrong $80/B41E BF 16 40 00 LDA $004016,x ; ??? $80/B422 29 01 AND #$01 $80/B424 F0 38 BEQ $38 ; [$B45E] Another security measure? $80/B426 BD 47 05 LDA $0547,x ; ??? $80/B429 F0 1B BEQ $1B ; [$B446] $80/B42B C2 20 REP #$20 $80/B42D B9 49 05 LDA $0549,y ; Load Joypad Data from the last frame, store it in $0551,y and push it on stack $80/B430 99 51 05 STA $0551,y $80/B433 48 PHA $80/B434 B9 18 42 LDA $4218,y ; Load Joypad-Input and store it in $0549-054C $80/B437 99 49 05 STA $0549,y $80/B43A 68 PLA $80/B43B 39 49 05 AND $0549,y ; Calculate, which buttons are held from the last frame, and store them in $054D,y $80/B43E 59 49 05 EOR $0549,y $80/B441 99 4D 05 STA $054D,y $80/B444 80 26 BRA $26 ; [$B46C] Leave out the "other" Fetching method $80/B446 A9 01 LDA #$01 ; ??? $80/B448 9D 47 05 STA $0547,x $80/B44B C2 20 REP #$20 $80/B44D B9 18 42 LDA $4218,y ; Load Joypad-Input and store it in $0549-054C $80/B450 99 49 05 STA $0549,y $80/B453 A9 00 00 LDA #$0000 ; $80/B456 99 4D 05 STA $054D,y ; Clear held buttons $80/B459 99 51 05 STA $0551,y ; Clear last frame's Joypad input $80/B45C 80 0E BRA $0E ; [$B46C] $80/B46C E2 20 SEP #$20 $80/B46E A5 F9 LDA $F9 ; ??? $80/B470 30 12 BMI $12 ; [$B484] If $F9 is negative, no Soft Reset is accepted? $80/B472 C2 20 REP #$20 $80/B474 B9 49 05 LDA $0549,y ; Check newly fetched Joypad data $80/B477 C9 30 30 CMP #$3030 ; Is Start, Select, L + R pressed? $80/B47A D0 08 BNE $08 ; [$B484]
Code is missing here
$80/B484 E2 20 SEP #$20 $80/B486 C8 INY ; Increment index registers $80/B487 C8 INY $80/B488 E8 INX $80/B489 E0 02 00 CPX #$0002 $80/B48C 90 89 BCC $89 ; [$B417] Repeat this for the second controller $80/B48E 60 RTS
$80/B4C8 An IRQ-Handler
This is an IRQ Handler. In Battle. With Battle Stats Menu on.
$80/B4C8 E2 20 SEP #$20 $80/B4CA 48 PHA ; Buffer A value on stack $80/B4CB AF 11 42 00 LDA $004211 ; Check if the IRQ flag is set $80/B4CF 10 72 BPL $72 ; [$B543] If not, branch, pull A from Stack and exit $80/B4D1 8B PHB ; Else, buffer the current Program bank and change it $80/B4D2 4B PHK $80/B4D3 AB PLB $80/B4D4 6C 34 00 JMP ($0034) ; Jump to the IRQ Handler [$80:B4D7]
$80/B4D7 Possibility where IRQ-Handler $80/B4C8 can jump to
A possibility where $80/B4C8 can jump to
$80/B4D7 AD F0 05 LDA $05F0 ; ??? $80/B4DA C9 DA CMP #$DA ; ??? $80/B4DC B0 4F BCS $4F ; [$B52D] ??? Branch is taken if A is higher $80/B4DE C2 10 REP #$10 ; ??? $80/B4E0 DA PHX ; ??? $80/B4E1 5A PHY ; ??? $80/B4E2 0B PHD ; ??? $80/B4E3 A2 00 21 LDX #$2100 ; This sets the direc bank to $2100, so every two-digit register is a $21xx register! $80/B4E6 DA PHX ; I guess this is done so the HBLANKs are optimally used $80/B4E7 2B PLD $80/B4E8 A9 09 LDA #$09 ; Prepare value so it can be stored right after the HBLANK $80/B4EA 2C 12 42 BIT $4212 ; V/HBLANK-Flag register $80/B4ED 70 FB BVS $FB ; [$B4EA] Loop until flag is set (HBLANK begins) $80/B4EF 2C 12 42 BIT $4212 $80/B4F2 50 FB BVC $FB ; [$B4EF] Loop until flag is cleared, HBLANK has just ended $80/B4F4 64 00 STZ $00 ; $2100 - turn down the Brightness $80/B4F6 85 05 STA $05 ; $2105 - BG mode 1 with priority bit $80/B4F8 64 31 STZ $31 ; $2131 - Deactivate color math $80/B4FA A0 07 00 LDY #$0007 ; Load next bunch of values $80/B4FD A2 38 38 LDX #$3838 $80/B500 A9 34 LDA #$34 $80/B502 2C 12 42 BIT $4212 ; Wait for the next passing of a HBLANK $80/B505 70 FB BVS $FB ; [$B502] $80/B507 2C 12 42 BIT $4212 $80/B50A 50 FB BVC $FB ; [$B507] $80/B50C 84 2C STY $2C ; $212C - BG1/2/3 (No sprites!) on Main Screen, nothing on subscreen $80/B50E 86 08 STX $08 ; BG2/3 Tilemap at $3800 in VRAM $80/B510 85 07 STA $07 ; BG1 Tilemap at $3400 $80/B512 A9 02 LDA #$02 ; BG1 Tiles at $2000 $80/B514 85 0B STA $0B $80/B516 AD 6A 05 LDA $056A ; Restore old brightness settings $80/B519 85 00 STA $00 $80/B51B 2B PLD ; Restore old Direct Bank $80/B51C A2 2D B5 LDX #$B52D ; Setting up the Address of the IRQ Handler $80/B51F 86 34 STX $34 ; For the last part, the IRQ Handler now jumps to $80/B52D $80/B521 A2 DC 00 LDX #$00DC ; V Timer on #$DC = (#220, the bottom line) - once executed is enough? $80/B524 8E 09 42 STX $4209 $80/B527 7A PLY ; Restore Y, X and Program Bank $80/B528 FA PLX $80/B529 AB PLB $80/B52A 4C 43 B5 JMP $B543 ; Pull A from Stack and RTI $80/B52D 2C 12 42 BIT $4212 ; V/HBLANK-Flag register $80/B530 70 FB BVS $FB ; [$B52D] Loop until flag is set (HBLANK begins) $80/B532 2C 12 42 BIT $4212 $80/B535 50 FB BVC $FB ; [$B532] Loop until flag is cleared, HBLANK has just ended $80/B537 9C 00 21 STZ $2100 ; No FBLANK, but screen brightness = 0 $80/B53A AD AF 05 LDA $05AF ; Deactivate(?) HBLANK $80/B53D 29 CF AND #$CF $80/B53F 8D 00 42 STA $4200 $80/B542 AB PLB ; Restore Program Bank and A $80/B543 68 PLA $80/B544 40 RTI
$80/B545 Long Jump to Clear Graphic Setup Registers
$80/B545 8B PHB ; Buffer Program Bank $80/B546 4B PHK ; Set Program Bank to $80 $80/B547 AB PLB $80/B548 20 4D B5 JSR $B54D ; Clear Graphic Setup Registers $80/B54B AB PLB ; Restore Program Bank $80/B54C 6B RTL
$80/B54D Clear Graphic Setup Registers
$80/B54D 9C 33 21 STZ $2133 $80/B550 A9 02 LDA #$02 ; 8x8 and 32x32 sprites $80/B552 8D 01 21 STA $2101 $80/B555 8D 88 05 STA $0588 $80/B558 A9 09 LDA #$09 ; Mode 1, Priority Bit $80/B55A 8D 05 21 STA $2105 $80/B55D 8D 89 05 STA $0589 $80/B560 A9 71 LDA #$71 ; BG1 Tilemap at $7000 in VRAM, h mirroring $80/B562 8D 07 21 STA $2107 $80/B565 8D 8B 05 STA $058B $80/B568 A9 79 LDA #$79 ; BG2 Tilemap at $7000 in VRAM, h/v mirroring $80/B56A 8D 08 21 STA $2108 $80/B56D 8D 8C 05 STA $058C $80/B570 A9 3C LDA #$3C ; BG3 Tilemap at $3C00 in VRAM $80/B572 8D 09 21 STA $2109 $80/B575 8D 8D 05 STA $058D $80/B578 A9 3C LDA #$3C ; BG3 Tilemap at $3C00 in VRAM $80/B57A 8D 0A 21 STA $210A $80/B57D 8D 8E 05 STA $058E $80/B580 A9 00 LDA #$00 ; BG1/2 Tiles at $0000 in VRAM $80/B582 8D 0B 21 STA $210B $80/B585 8D 8F 05 STA $058F $80/B588 A9 55 LDA #$55 ; BG3/4 Tiles at $5000 in VRAM $80/B58A 8D 0C 21 STA $210C $80/B58D 8D 90 05 STA $0590 $80/B590 A9 17 LDA #$17 ; BG1-3 and Sprites for Main Screen $80/B592 8D 2C 21 STA $212C $80/B595 8D A6 05 STA $05A6 $80/B598 A9 04 LDA #$04 ; BG4 for Subscreen $80/B59A 8D 2D 21 STA $212D $80/B59D 8D A7 05 STA $05A7 $80/B5A0 9C A8 05 STZ $05A8 ; Window Mask Registers $80/B5A3 9C 2E 21 STZ $212E $80/B5A6 9C A9 05 STZ $05A9 $80/B5A9 9C 2F 21 STZ $212F $80/B5AC A9 02 LDA #$02 $80/B5AE 8D AA 05 STA $05AA ; $2130 Buffer - Add subscreen $80/B5B1 A9 23 LDA #$23 $80/B5B3 8D AB 05 STA $05AB ; ??? $80/B5B6 A9 E0 LDA #$E0 $80/B5B8 8D AC 05 STA $05AC ; $2132 Buffer? $80/B5BB 8D AD 05 STA $05AD ; $2132 Buffer? $80/B5BE 8D AE 05 STA $05AE ; $2132 Buffer? $80/B5C1 9C 8A 05 STZ $058A ; Clear $2106 (Mosaic Register) $80/B5C4 60 RTS
$80/B66B Long Jump to Clear Registers, clear WRAM Bank $7F
$80/B66B 8B PHB ; Buffer Program Bank $80/B66C 4B PHK ; Set Program Bank to $80 $80/B66D AB PLB $80/B66E 20 73 B6 JSR $B673 ; Clear Registers, clear WRAM Bank $7F $80/B671 AB PLB ; Restore Program Bank $80/B672 6B RTL
$80/B673 Clear Registers, clear WRAM Bank $7F
$80/B673 A2 02 42 LDX #$4202 ; Clear $4202 to $420C $80/B676 A9 0B LDA #$0B $80/B678 74 00 STZ $00,x $80/B67A E8 INX $80/B67B 3A DEC A $80/B67C D0 FA BNE $FA [$B678] $80/B67E A9 FF LDA #$FF ; "Programmable I/O Port" $80/B680 8D 01 42 STA $4201 $80/B683 A2 06 21 LDX #$2106 ; Clear $2106 to $2114 $80/B686 A9 0F LDA #$0F $80/B688 74 00 STZ $00,x $80/B68A 74 00 STZ $00,x $80/B68C E8 INX $80/B68D 3A DEC A $80/B68E D0 F8 BNE $F8 $80/B690 A9 80 LDA #$80 $80/B692 95 00 STA $00,x [$00:2115] $80/B694 A9 01 LDA #$01 $80/B696 A2 1A 21 LDX #$211A ; Mode 7 Settings $80/B699 74 00 STZ $00,x ; Clear a lot of Mode 7 Registers $80/B69B 74 01 STZ $01,x $80/B69D 95 01 STA $01,x $80/B69F 74 02 STZ $02,x $80/B6A1 74 02 STZ $02,x $80/B6A3 74 03 STZ $03,x $80/B6A5 74 03 STZ $03,x $80/B6A7 74 04 STZ $04,x $80/B6A9 95 04 STA $04,x $80/B6AB 74 05 STZ $05,x $80/B6AD 74 05 STZ $05,x $80/B6AF 74 06 STZ $06,x $80/B6B1 74 06 STZ $06,x $80/B6B3 A2 23 21 LDX #$2123 ; Clear $2123 to $212E $80/B6B6 A9 0C LDA #$0C $80/B6B8 74 00 STZ $00,x $80/B6BA E8 INX $80/B6BB 3A DEC A $80/B6BC D0 FA BNE $FA [$B6B8] $80/B6BE A2 30 21 LDX #$2130 $80/B6C1 A9 30 LDA #$30 $80/B6C3 95 00 STA $00,x ; $2130 - Color Addition $80/B6C5 74 01 STZ $01,x ; $2131 - Color Subtraction $80/B6C7 A9 E0 LDA #$E0 $80/B6C9 95 02 STA $02,x ; $2132 - Fixed Color Data $80/B6CB 74 03 STZ $03,x ; $2133 - Screen Mode/Video Select
And then proceeds on the next part
$80/B6CD Set up $7F Clear DMA
$80/B6CD A0 00 00 LDY #$0000 ; Transfer $10000 Byte $80/B6D0 8C 05 43 STY $4305 $80/B6D3 A0 00 00 LDY #$0000 ; Destination: #$7F:0000 $80/B6D6 38 SEC $80/B6D7 A2 F1 B6 LDX #$B6F1 ; Position of the Clear Byte: $80/B6F1 $80/B6DA A9 80 LDA #$80 $80/B6DC 20 AB 9D JSR $9DAB ; Fixed WRAM Clear DMA
$80/B6DF Set up VRAM Clear DMA
$80/B6DF A0 00 00 LDY #$0000 ; Transfer $10000 Byte $80/B6E2 8C 05 43 STY $4305 $80/B6E5 A0 00 00 LDY #$0000 ; (VRAM-)Destination: #0000 $80/B6E8 A2 F1 B6 LDX #$B6F1 ; Position of the Clear Byte: $80/B6F1 $80/B6EB A9 80 LDA #$80 $80/B6ED 20 89 9D JSR $9D89 ; Fixed VRAM Clear DMA $80/B6F0 60 RTS
Bank $81
$81/EF8F ?
$81/EF8F 8B PHB A:0099 X:905E Y:000D P:eNvMxdizc $81/EF90 48 PHA A:0099 X:905E Y:000D P:eNvMxdizc $81/EF91 AB PLB A:0099 X:905E Y:000D P:eNvMxdizc $81/EF92 C2 20 REP #$20 A:0099 X:905E Y:000D P:eNvMxdizc $81/EF94 98 TYA A:0099 X:905E Y:000D P:eNvmxdizc $81/EF95 4A LSR A A:000D X:905E Y:000D P:envmxdizc $81/EF96 4A LSR A A:0006 X:905E Y:000D P:envmxdizC $81/EF97 4A LSR A A:0003 X:905E Y:000D P:envmxdizc $81/EF98 48 PHA A:0001 X:905E Y:000D P:envmxdizC $81/EF99 8A TXA A:0001 X:905E Y:000D P:envmxdizC $81/EF9A 18 CLC A:905E X:905E Y:000D P:eNvmxdizC $81/EF9B 63 01 ADC $01,s [$00:1FE7] A:905E X:905E Y:000D P:eNvmxdizc $81/EF9D 83 01 STA $01,s [$00:1FE7] A:905F X:905E Y:000D P:eNvmxdizc $81/EF9F E2 20 SEP #$20 A:905F X:905E Y:000D P:eNvmxdizc $81/EFA1 7B TDC A:905F X:905E Y:000D P:eNvMxdizc $81/EFA2 98 TYA A:0000 X:905E Y:000D P:envMxdiZc $81/EFA3 29 07 AND #$07 A:000D X:905E Y:000D P:envMxdizc $81/EFA5 AA TAX A:0005 X:905E Y:000D P:envMxdizc $81/EFA6 BF B6 EF 81 LDA $81EFB6,x[$81:EFBB] A:0005 X:0005 Y:000D P:envMxdizc $81/EFAA FA PLX A:0020 X:0005 Y:000D P:envMxdizc $81/EFAB 48 PHA A:0020 X:905F Y:000D P:eNvMxdizc $81/EFAC BD 00 00 LDA $0000,x[$99:905F] A:0020 X:905F Y:000D P:eNvMxdizc $81/EFAF 23 01 AND $01,s [$00:1FE8] A:0000 X:905F Y:000D P:envMxdiZc $81/EFB1 C9 01 CMP #$01 A:0000 X:905F Y:000D P:envMxdiZc $81/EFB3 68 PLA A:0000 X:905F Y:000D P:eNvMxdizc $81/EFB4 AB PLB A:0020 X:905F Y:000D P:envMxdizc $81/EFB5 6B RTL A:0020 X:905F Y:000D P:envMxdizc
$81/F9E5 Decompression subroutine
During the new game creation process, this is executed when one of these artworks gets loaded
This subroutine builds an MVN command (which moves normally big chunks of data from one address to WRAM) in WRAM and then jumps to it.
MVN: X is source, Y is destination, C number of bytes minus one (C=#$0005, six bytes will be moved)
The arguments are transfered to it as follows:
$0C contains the number of bytes to transfer minus one (if $0C = #$05, six bytes will be moved)
$0E will contain the size of the decompressed data when this subroutine is left
$20 contains the destination address for the MVN-command
$22 contains the source bank for the MVN-command (and destination bank, in many cases)
X and A contain a 24-bit address; this is an address to the compressed data.
$81/F9E5 8B PHB ; Preserve Program Bank $81/F9E6 85 25 STA $25 ; Store the brought-in bank to the where-to-read address buffer $81/F9E8 A5 22 LDA $22 ; For the MVN-command, load the Destination bank and set it up in WRAM $81/F9EA 85 AD STA $AD $81/F9EC 48 PHA ; Set up the same bank as Program Bank $81/F9ED AB PLB $81/F9EE A9 54 LDA #$54 ; #$54 is "MVN" when interpreted as code $81/F9F0 85 AC STA $AC $81/F9F2 A9 60 LDA #$60 ; #$60 is "RTS" when interpreted as code $81/F9F4 85 AF STA $AF $81/F9F6 A4 20 LDY $20 ; Load the MVN-destination address in Y $81/F9F8 C2 21 REP #$21 ; 16-bit A, Clear Carry $81/F9FA 86 23 STX $23 ; Setup the load address (for the compressed data) $81/F9FC A7 23 LDA [$23] ; Load first two bytes (Size of the decompressed data) $81/F9FE 85 0E STA $0E ; Store the size of the decompressed data in $0E $81/FA00 65 20 ADC $20 ; Calculate the Y value when this data is completely decompressed $81/FA02 85 0A STA $0A ; Store that as comparison value in $0A $81/FA04 E8 INX ; After the first two bytes are read, increment the pointer to the next unread byte $81/FA05 E8 INX $81/FA06 E2 20 SEP #$20 $81/FA08 80 31 BRA $31 ; [$FA3B] Go to the main decompression case handler $81/FA0A E6 25 INC $25 ; Increment Compressed Data Address Bank $81/FA0C A2 00 80 LDX #$8000 ; Set Compressed Data Address Pointer back to $8000 $81/FA0F 80 2A BRA $2A ; [$FA3B] Go on $81/FA11 29 78 AND #$78 ; Remove the MSB from the Data byte $81/FA13 4A LSR A ; A = A/8 + 2 $81/FA14 4A LSR A ; Note that the division by eight removes bits 0 to 2, too $81/FA15 4A LSR A ; (And now, please read the last line's comment out loud) $81/FA16 1A INC A $81/FA17 1A INC A $81/FA18 85 0C STA $0C ; A is the number of bytes to transfer $81/FA1A A5 22 LDA $22 ; In this case, $22 is the second argument for the MVN command, too $81/FA1C 85 AE STA $AE ; So this is always a movement on the same bank $81/FA1E C2 21 REP #$21 ; 16 bit A, Clear Carry $81/FA20 A7 23 LDA [$23] ; Load two bytes from compressed data $81/FA22 EB XBA ; Please note that the already-loaded byte gets loaded again $81/FA23 29 FF 07 AND #$07FF ; but this time, all the bits that were used here before are removed $81/FA26 1A INC A ; What is now in A is the number of bytes to move backwards minus one $81/FA27 85 08 STA $08 ; This decompression function repeats already decompressed lines $81/FA29 98 TYA ; Here, the program takes the current where-to-write pointer... $81/FA2A 38 SEC ; ... and subtracts the loaded number of bytes to form the new read-pointer $81/FA2B E5 08 SBC $08 ; The "INC A" makes the program move one byte more back than in the loaded value $81/FA2D E8 INX ; Increment the Compressed Data Load address $81/FA2E E8 INX $81/FA2F DA PHX ; Push the Compressed Data Load address on stack, ... $81/FA30 AA TAX ; ... because X has to contain the Read-Pointer for the upcoming MVN $81/FA31 A5 0C LDA $0C ; Load number of bytes to transfer $81/FA33 20 AC 00 JSR $00AC ; Jump to the self-written MVN command $81/FA36 FA PLX ; Get the Compressed Data Load Address back from stack $81/FA37 E2 20 SEP #$20 $81/FA39 80 00 BRA $00 ; [$FA3B] Go on with the decompression - this line could be removed $81/FA3B C4 0A CPY $0A ; Is the end point of the decompression reached? (= Is everything decompressed?) $81/FA3D F0 14 BEQ $14 ; [$FA53] Exit if it is $81/FA3F 64 0D STZ $0D ; Clear the upper byte of the bytes-to-transfer buffer register $81/FA41 86 23 STX $23 ; Update the compressed data read-address $81/FA43 A7 23 LDA [$23] ; Load next byte (8 bit A!) $81/FA45 30 CA BMI $CA ; [$FA11] Branch if MSB is set - Repeat already decompressed bytes $81/FA47 F0 C1 BEQ $C1 ; [$FA0A] Branch if byte is empty - Compressed data is on the next bank $81/FA49 89 40 BIT #$40 $81/FA4B D0 20 BNE $20 ; [$FA6D] Branch if Bit 6 is set - Copy directly from compressed data $81/FA4D 89 20 BIT #$20 $81/FA4F D0 04 BNE $04 ; [$FA55] Branch if Bit 5 is set - write empty bytes into decompressed data $81/FA51 80 2B BRA $2B ; [$FA7E] Branch if Bit 5 is clear - Copy decompressed data - long and/or far back $81/FA53 AB PLB ; THE END: Restore Original Program Bank and exit $81/FA54 6B RTL $81/FA55 29 1F AND #$1F ; The lower bits of this byte are the number of bytes to do (minus one) $81/FA57 85 0C STA $0C $81/FA59 E8 INX ; Increment Read Pointer and store it on Stack $81/FA5A DA PHX $81/FA5B 7B TDC ; Clear 16-bit A $81/FA5C 99 00 00 STA $0000,y ; Write an empty byte into the decompressed data $81/FA5F BB TYX ; Set read address to this byte $81/FA60 C8 INY ; Increment write address $81/FA61 A5 22 LDA $22 ; Set the MVN destination bank to the same as the source bank $81/FA63 85 AE STA $AE $81/FA65 A5 0C LDA $0C ; Load number of bytes to transfer $81/FA67 20 AC 00 JSR $00AC ; Jump to the self-written MVN command $81/FA6A FA PLX ; Pull Compressed Data Read Pointer from Stack $81/FA6B 80 CE BRA $CE ; [$FA3B] Go on with the decompression $81/FA6D 29 3F AND #$3F ; The other bits in this command-byte are the number of bytes minus one $81/FA6F 85 0C STA $0C $81/FA71 E8 INX ; Increment read address $81/FA72 A5 25 LDA $25 ; Source Bank is the same as the 24-bit-read address bank (of course) $81/FA74 85 AE STA $AE $81/FA76 7B TDC ; Clear 16-bit A $81/FA77 A5 0C LDA $0C ; Load the number of bytes to do minus one $81/FA79 20 AC 00 JSR $00AC ; Jump to the self-written MVN command $81/FA7C 80 BD BRA $BD ; [$FA3B] Go on with the decompression $81/FA7E 29 0F AND #$0F ; Lower part of the command byte is PART of the number of bytes to transfer $81/FA80 85 0C STA $0C $81/FA82 E8 INX ; Increment Read address $81/FA83 86 23 STX $23 $81/FA85 A7 23 LDA [$23] ; Read next Byte from Compressed Data $81/FA87 29 C0 AND #$C0 ; the two most significant bits are part of the number of bytes to transfer $81/FA89 4A LSR A $81/FA8A 4A LSR A $81/FA8B 05 0C ORA $0C $81/FA8D 18 CLC ; Add three additional bytes to the number of bytes to transfer $81/FA8E 69 03 ADC #$03 $81/FA90 85 0C STA $0C $81/FA92 A5 22 LDA $22 ; Source Bank is the same as Destination address $81/FA94 85 AE STA $AE $81/FA96 C2 21 REP #$21 ; 16 bit A, clear Carry $81/FA98 A7 23 LDA [$23] ; Load next two bytes $81/FA9A EB XBA $81/FA9B 29 FF 3F AND #$3FFF ; This value is the number of bytes to move backwards $81/FA9E 1A INC A ; Move another byte backwards $81/FA9F 85 08 STA $08 ; Temp store $81/FAA1 98 TYA ; Copy the write address $81/FAA2 38 SEC $81/FAA3 E5 08 SBC $08 ; Subtract the number of bytes to go back $81/FAA5 E8 INX ; Increment Compressed Data Read Pointer $81/FAA6 E8 INX $81/FAA7 DA PHX ; Buffer Compressed Data Read Pointer $81/FAA8 AA TAX $81/FAA9 A5 0C LDA $0C ; Load number of bytes to transfer $81/FAAB 20 AC 00 JSR $00AC ; Jump to the self-written MVN command $81/FAAE FA PLX ; Restore Compressed Data Read Pointer $81/FAAF E2 20 SEP #$20 $81/FAB1 80 88 BRA $88 ; [$FA3B] Go on with the decompression
Bank $82
$82/98AA Battle Stats Menu - Buffer Character's data
When you open the Stats Menu in Battle (the one in the bottom part of the menu), this subroutine collects all the stats values and puts them in a number of buffer registers.
$82/98AA 8B PHB ; Buffer Data Bank Register on stack $82/98AB 4B PHK $82/98AC AB PLB $82/98AD A6 39 LDX $39 ; Character number as Index $82/98AF BD AE 17 LDA $17AE,x ; Character graphic $82/98B2 8D 9F 1E STA $1E9F $82/98B5 BD AF 17 LDA $17AF,x ; ??? $82/98B8 8D 66 1E STA $1E66 $82/98BB BD D7 17 LDA $17D7,x ; Character Element $82/98BE 8D 67 1E STA $1E67 $82/98C1 BD FE 17 LDA $17FE,x ; Level $82/98C4 8D 68 1E STA $1E68 $82/98C7 BD FF 17 LDA $17FF,x ; Exp $82/98CA 8D 69 1E STA $1E69 $82/98CD BD B6 19 LDA $19B6,x ; LUK $82/98D0 8D 7E 1E STA $1E7E $82/98D3 BD D6 17 LDA $17D6,x ; ??? $82/98D6 8D 7F 1E STA $1E7F $82/98D9 BD DE 19 LDA $19DE,x ; ??? (Status Effects?) $82/98DC 8D 80 1E STA $1E80 $82/98DF BD DF 19 LDA $19DF,x ; ??? $82/98E2 8D A0 1E STA $1EA0 $82/98E5 BD 2E 1A LDA $1A2E,x ; ??? $82/98E8 8D 81 1E STA $1E81 $82/98EB BD 2F 1A LDA $1A2F,x ; ??? $82/98EE 8D 82 1E STA $1E82 $82/98F1 BD 56 1A LDA $1A56,x ; ??? $82/98F4 8D 8F 1E STA $1E8F $82/98F7 BD 57 1A LDA $1A57,x ; ??? $82/98FA 8D 90 1E STA $1E90 $82/98FD BD 6E 1B LDA $1B6E,x ; ??? $82/9900 8D 91 1E STA $1E91 $82/9903 BD C7 1D LDA $1DC7,x ; ??? $82/9906 8D 96 1E STA $1E96 $82/9909 BD EE 1D LDA $1DEE,x ; Number of Moves $82/990C 8D 97 1E STA $1E97 $82/990F BD B7 19 LDA $19B7,x ; ??? $82/9912 8D 9D 1E STA $1E9D $82/9915 BD 26 1D LDA $1D26,x ; ??? $82/9918 8D 9E 1E STA $1E9E $82/991B C2 20 REP #$20 ; 16 bit values ahead $82/991D BD 26 18 LDA $1826,x ; Current HP $82/9920 8D 6A 1E STA $1E6A $82/9923 BD 4E 18 LDA $184E,x ; Max HP $82/9926 8D 6C 1E STA $1E6C $82/9929 BD 76 18 LDA $1876,x ; Current MP $82/992C 8D 6E 1E STA $1E6E $82/992F BD 9E 18 LDA $189E,x ; Max MP $82/9932 8D 70 1E STA $1E70 $82/9935 BD C6 18 LDA $18C6,x ; STR $82/9938 8D 72 1E STA $1E72 $82/993B BD EE 18 LDA $18EE,x ; INT $82/993E 8D 74 1E STA $1E74 $82/9941 BD 16 19 LDA $1916,x ; AGI $82/9944 8D 76 1E STA $1E76 $82/9947 BD 3E 19 LDA $193E,x ; DEX $82/994A 8D 78 1E STA $1E78 $82/994D BD 66 19 LDA $1966,x ; VIT $82/9950 8D 7A 1E STA $1E7A $82/9953 BD 8E 19 LDA $198E,x ; MEN $82/9956 8D 7C 1E STA $1E7C $82/9959 BD 7E 1A LDA $1A7E,x ; ??? $82/995C 8D 83 1E STA $1E83 $82/995F BD A6 1A LDA $1AA6,x ; ??? $82/9962 8D 85 1E STA $1E85 $82/9965 BD CE 1A LDA $1ACE,x ; ??? $82/9968 8D 87 1E STA $1E87 $82/996B BD F6 1A LDA $1AF6,x ; ??? $82/996E 8D 89 1E STA $1E89 $82/9971 BD 1E 1B LDA $1B1E,x ; ??? $82/9974 8D 8B 1E STA $1E8B $82/9977 BD 46 1B LDA $1B46,x ; ??? $82/997A 8D 8D 1E STA $1E8D $82/997D BD 96 1B LDA $1B96,x ; ??? $82/9980 8D 92 1E STA $1E92 $82/9983 BD 9E 1D LDA $1D9E,x ; 16-bit Address (on WRAM bank $7E) of the Character's name, class etc. $82/9986 8D 94 1E STA $1E94 $82/9989 E2 20 SEP #$20 $82/998B BD 3E 1E LDA $1E3E,x ; ??? $82/998E 8D 98 1E STA $1E98 $82/9991 A6 39 LDX $39 ; Load Character's number (again) $82/9993 AB PLB ; Restore Data Bank Register $82/9994 6B RTL
$82/9BC8 ?
$82/9BC8 8B PHB ; Buffer Data Bank $82/9BC9 4B PHK ; Set Data Bank to $82 $82/9BCA AB PLB $82/9BCB 9C F4 16 STZ $16F4 ; ??? $82/9BCE 9C F5 16 STZ $16F5 ; ??? $82/9BD1 9C F6 16 STZ $16F6 ; ??? $82/9BD4 9C F7 16 STZ $16F7 ; ??? $82/9BD7 9C F8 16 STZ $16F8 ; ??? $82/9BDA 9C F9 16 STZ $16F9 ; ??? $82/9BDD 9C FA 16 STZ $16FA ; ??? $82/9BE0 A9 04 LDA #$04 ; ??? $82/9BE2 85 96 STA $96 ; ??? $82/9BE4 64 97 STZ $97 ; ??? $82/9BE6 A2 00 04 LDX #$0400 ; Size of the Tilemaps to be created (in $B206) $82/9BE9 86 0C STX $0C ; Store as Number of Bytes to transfer (in $B235) $82/9BEB 20 06 B2 JSR $B206 ; Create Clear Tilemaps (for Battle Stats Menu) $82/9BEE 20 35 B2 JSR $B235 ; Battle Stats Menu - transfer the buffered tilemaps into VRAM $82/9BF1 22 DA B1 82 JSL $82B1DA ; Clear BG3 Tilemap $82/9BF5 9C 60 00 STZ $0060 ; ??? $82/9BF8 AB PLB ; Restore Data Bank $82/9BF9 6B RTL
$82/AE91 Battle Stats Menu - Tilemap builder
This subroutine is called when the game has to build the status menu at the bottom of the battle screen. It builds some tiles into the tilemap - it is used quite often. This writes a rectangle shape into the tilemap, you have to give it the number of columns and rows it has to span.
Before it is called, certain values have to be set up.
X contains the 16-bit address where to read the tile data that has to be implemented into the tilemap.
$0A/B and $98/9 contain adress data that, together, form another part of the offset for the write address. Not sure what component each one brings in.
$0C contains what has to be added to the ROM read data before it is added to the tilemap, i. e. flipping or palette stuff.
$0E contains the number of rows this should edit, $0F the number of lines; these get transfered to $00/$01
$2C contains the 24-bit address of the tilemap buffer.
$82/AE91 C2 21 REP #$21 $82/AE93 A5 0A LDA $0A ; ??? This forms the where-to-write starting address $82/AE95 65 98 ADC $98 ; ??? Dunno what each part of this addition means singularly, though $82/AE97 A8 TAY ; Transfer where-to-write index in Y $82/AE98 E2 20 SEP #$20 $82/AE9A A5 0F LDA $0F ; Transfer row count into the loop counter $82/AE9C 85 01 STA $01 $82/AE9E A5 0E LDA $0E ; Transfer column count into the loop counter $82/AEA0 85 00 STA $00 $82/AEA2 5A PHY ; Push the start of this line on stack $82/AEA3 C2 21 REP #$21 $82/AEA5 BD 00 00 LDA $0000,x ; Load the tilemap entry from ROM $82/AEA8 65 0C ADC $0C ; Add additional information to it if there is some $82/AEAA 97 2C STA [$2C],y ; Write it in the buffered tilemap $82/AEAC E2 20 SEP #$20 $82/AEAE C8 INY ; Increment read and write counters $82/AEAF C8 INY $82/AEB0 E8 INX $82/AEB1 E8 INX $82/AEB2 C6 00 DEC $00 ; Decrement inner loop counter (columns) $82/AEB4 D0 ED BNE $ED ; [$AEA3] Loop if it isn't depleted $82/AEB6 C2 21 REP #$21 $82/AEB8 68 PLA ; Pull the address of the start of the row from stack $82/AEB9 69 40 00 ADC #$0040 ; Calculate the address of the start of the next row $82/AEBC A8 TAY ; Transfer in Y (so it gets pushed on stack at $AEA2 after looping) $82/AEBD E2 20 SEP #$20 $82/AEBF C6 01 DEC $01 ; Decrement outer loop counter (rows) $82/AEC1 D0 DB BNE $DB ; [$AE9E] Loop if it isn't depleted $82/AEC3 60 RTS
$82/B1DA Clear BG3 Tilemap
This subroutine writes an empty tilemap for BG3 in WRAM and transfers it to VRAM. It writes at 7E/A800 "$03EE" for $800 bytes and transfers this to VRAM at $3C00, where the BG3 Tilemap in many/most of the cases is located. "$03EE" is of course an empty tile - "$0000" is used by some sprite tiles.
$82/B1DA 8B PHB ; Buffer Data Bank $82/B1DB A9 7E LDA #$7E ; Set Data Bank to $7E $82/B1DD 48 PHA $82/B1DE AB PLB $82/B1DF C2 20 REP #$20 $82/B1E1 A2 00 08 LDX #$0800 ; Write "$03EE" at $7E/A800 and onwards for #$0800 times $82/B1E4 A0 00 A8 LDY #$A800 $82/B1E7 A9 EE 03 LDA #$03EE $82/B1EA 22 C8 9D 80 JSL $809DC8 ; Write Empty Tilemap $82/B1EE E2 20 SEP #$20 $82/B1F0 AB PLB ; Restore Original Data Bank $82/B1F1 A2 00 00 LDX #$0000 ; Set BG3 Scroll Registers to 0 $82/B1F4 8E 99 05 STX $0599 $82/B1F7 8E 9B 05 STX $059B $82/B1FA 22 EB 9E 80 JSL $809EEB ; VRAM DMA of the following data: $82/B1FE 00 A8 7E Address: $7E/A800 $82/B201 00 3C VRAM Address: $3C00 (BG3 Tilemap) $82/B203 00 08 Transfer $0800 Bytes $82/B205 6B RTL
$82/B206 Create Clear Tilemaps (for Battle Stats Menu?)
$82/B206 8B PHB ; Buffer Data Bank $82/B207 A9 7F LDA #$7F ; Set Data Bank to $7F $82/B209 48 PHA $82/B20A AB PLB $82/B20B C2 20 REP #$20 $82/B20D 86 00 STX $00 ; Buffer the Number of Bytes to do $82/B20F A0 00 14 LDY #$1400 ; Write to $7F/1400 $82/B212 A9 80 00 LDA #$0080 ; The value to write $82/B215 22 C8 9D 80 JSL $809DC8 ; Long Jump to Write Empty Tilemap in WRAM $82/B219 A6 00 LDX $00 ; Restore the Number of Bytes to do $82/B21B A0 00 18 LDY #$1800 ; Write to $7F/1800 $82/B21E A9 80 02 LDA #$0280 ; The value to write $82/B221 22 C8 9D 80 JSL $809DC8 ; Long Jump to Write Empty Tilemap in WRAM $82/B225 A6 00 LDX $00 ; Restore the Number of Bytes to do $82/B227 A0 00 1C LDY #$1C00 ; Write to $7F/1C00 $82/B22A A9 EE 03 LDA #$03EE ; The value to write $82/B22D 22 C8 9D 80 JSL $809DC8 ; Long Jump to Write Empty Tilemap in WRAM $82/B231 E2 20 SEP #$20 $82/B233 AB PLB ; Restore Data Bank $82/B234 60 RTS
$82/B235 Battle Stats Menu - transfer the buffered tilemaps into VRAM
This simple subroutine transfers the three buffered BG1 to BG3 tilemaps for the menu to VRAM.
$82/B235 A9 80 LDA #$80 ; VRAM transfer settings (for $2115) $82/B237 85 0E STA $0E $82/B239 A0 00 36 LDY #$3600 ; BG1 tilemap: VRAM destination $82/B23C A2 00 14 LDX #$1400 ; BG1 tilemap: Source Data Position: $7F/1400 $82/B23F A9 7F LDA #$7F $82/B241 22 24 9F 80 JSL $809F24 ; BG1 tilemap: VRAM DMA $82/B245 A0 00 3A LDY #$3A00 ; BG2 tilemap: VRAM destination $82/B248 A2 00 18 LDX #$1800 ; BG2 tilemap: Source Data Position: $7F/1800 $82/B24B A9 7F LDA #$7F $82/B24D 22 24 9F 80 JSL $809F24 ; BG2 tilemap: VRAM DMA $82/B251 A0 00 38 LDY #$3800 ; BG3 tilemap: VRAM destination $82/B254 A2 00 1C LDX #$1C00 ; BG3 tilemap: Source Data Position: $7F/1C00 $82/B257 A9 7F LDA #$7F $82/B259 22 24 9F 80 JSL $809F24 ; BG3 tilemap: VRAM DMA $82/B25D 60 RTS
$82/F810 ?
From the Game Intro - "Quest presents" stuff
$82/F810 29 FF 00 AND #$00FF A:041C X:0400 Y:0B44 P:envmxdizc $82/F813 F0 45 BEQ $45 [$F85A] A:001C X:0400 Y:0B44 P:envmxdizc $82/F815 0A ASL A A:001C X:0400 Y:0B44 P:envmxdizc $82/F816 85 0C STA $0C [$00:000C] A:0038 X:0400 Y:0B44 P:envmxdizc $82/F818 18 CLC A:0038 X:0400 Y:0B44 P:envmxdizc $82/F819 6D C5 0E ADC $0EC5 [$82:0EC5] A:0038 X:0400 Y:0B44 P:envmxdizc $82/F81C AA TAX A:0038 X:0400 Y:0B44 P:envmxdizc $82/F81D E2 20 SEP #$20 A:0038 X:0038 Y:0B44 P:envmxdizc $82/F81F AD C7 0E LDA $0EC7 [$82:0EC7] A:0038 X:0038 Y:0B44 P:envMxdizc $82/F822 1A INC A A:0000 X:0038 Y:0B44 P:envMxdiZc $82/F823 22 CB AD 80 JSL $80ADCB ; Calculate Offset: A * #$40 + X $82/F827 E0 00 12 CPX #$1200 ; ??? Maybe check if the result is too big? $82/F82A 90 0C BCC $0C ; [$F838] ??? Taken if smaller
Code is missing here
$82/F838 C2 21 REP #$21 ; 16-bit A + Clear Carry $82/F83A A5 0A LDA $0A ; ??? $82/F83C 69 00 78 ADC #$7800 ; ??? $82/F83F A8 TAY ; VRAM Destination Address $82/F840 AD D8 16 LDA $16D8 ; ??? $82/F843 18 CLC ; ??? $82/F844 69 00 EC ADC #$EC00 ; ??? $82/F847 AA TAX ; DMA Source Address $82/F848 E2 20 SEP #$20 $82/F84A A9 7F LDA #$7F ; VRAM DMA Source Bank $82/F84C 22 24 9F 80 JSL $809F24 ; VRAM DMA Setup Execution $82/F850 C2 21 REP #$21 A:1801 X:0038 Y:7EC4 P:eNvMxdizc $82/F852 A5 0C LDA $0C [$00:000C] A:1801 X:0038 Y:7EC4 P:eNvmxdizc $82/F854 6D D8 16 ADC $16D8 [$82:16D8] A:0038 X:0038 Y:7EC4 P:envmxdizc $82/F857 8D D8 16 STA $16D8 [$82:16D8] A:0038 X:0038 Y:7EC4 P:envmxdizc $82/F85A 60 RTS A:0038 X:0038 Y:7EC4 P:envmxdizc
$82/FAAC ?
The second part of this subroutine transfers the data from $164B onwards into the CGRAM buffer and builds actual palettes from it - the data at $164B only contains fourteen colors per planned palette.
The palettes are built the following way:
($FAD2 to $FAD9) The first color is $0000 ($FADA to $FAE9) The next #$0D (thirteen) colors are copied from [$20] = $00/164B + x ($FAEA to $FAEB) The fourteenth color gets left out ($FAEC to $FAF7) The fifteenth and last color gets copied from [$20] = $00/164B + x
$82/FAAC 8B PHB ; Preserve Data Bank $82/FAAD 4B PHK ; Change Data Bank to this $82/FAAE AB PLB $82/FAAF A2 4B 16 LDX #$164B ; Setup 24-bit Address in $20-22 to $00/164B (=$7E/164B) $82/FAB2 86 20 STX $20 $82/FAB4 A9 00 LDA #$00 $82/FAB6 85 22 STA $22 $82/FAB8 22 0F FB 82 JSL $82FB0F ; ??? $82/FABC D4 00 PEI ($00) ; Preserve $00-3 on Stack $82/FABE D4 02 PEI ($02) $82/FAC0 C2 20 REP #$20 $82/FAC2 A2 80 00 LDX #$0080 ; Store Index - where to begin to store in $124B and $144B $82/FAC5 A0 00 00 LDY #$0000 ; Load Index $82/FAC8 A9 04 00 LDA #$0004 ; Setup Palette Counter - how many palettes to do $82/FACB 85 00 STA $00 $82/FACD A9 0D 00 LDA #$000D ; Setup Color counter - counter for the thirteen colors $82/FAD0 85 02 STA $02 $82/FAD2 9E 4B 12 STZ $124B,x ; Clear the first two bytes in the palette (making it pitch-black) $82/FAD5 9E 4B 14 STZ $144B,x ; Do the same in the second CGRAM buffer $82/FAD8 E8 INX ; Increment Store Index so it points to the next color $82/FAD9 E8 INX $82/FADA B7 20 LDA [$20],y ; Load color from around $164B $82/FADC 9D 4B 12 STA $124B,x ; Store it in CGRAM buffer $82/FADF 9D 4B 14 STA $144B,x ; Do the same in the second CGRAM buffer $82/FAE2 C8 INY ; Increment Load Index so it points to the next color $82/FAE3 C8 INY $82/FAE4 E8 INX ; Increment Store Index so it points to the next color $82/FAE5 E8 INX $82/FAE6 C6 02 DEC $02 ; Decrement color counter $82/FAE8 D0 F0 BNE $F0 ; [$FADA] Loop until all thirteen colors are done $82/FAEA E8 INX ; Increment X twice - leave the fourteenth color out $82/FAEB E8 INX $82/FAEC B7 20 LDA [$20],y ; Load color from around $164B $82/FAEE 9D 4B 12 STA $124B,x ; Store it in CGRAM buffer $82/FAF1 9D 4B 14 STA $144B,x ; Do the same in the second CGRAM buffer $82/FAF4 C8 INY ; Increment Load Index so it points to the next color $82/FAF5 C8 INY $82/FAF6 E8 INX ; Increment Store Index so it points to the next color $82/FAF7 E8 INX $82/FAF8 C6 00 DEC $00 ; Decrement Palette Counter $82/FAFA D0 D1 BNE $D1 ; [$FACD] Loop until all four palettes are done $82/FAFC E2 20 SEP #$20 $82/FAFE A9 40 LDA #$40 ; CGRAM Destination $82/FB00 A0 80 00 LDY #$0080 ; Number of Bytes $82/FB03 22 B5 9E 80 JSL $809EB5 ; Transfer these four palettes from CGRAM buffer to CGRAM $82/FB07 7A PLY ; Restore $00-$03 and exit $82/FB08 84 02 STY $02 $82/FB0A 7A PLY $82/FB0B 84 00 STY $00 $82/FB0D AB PLB $82/FB0E 6B RTL
Bank $83
$83/A990 ?
This is about some color calculation. $20-22 and $23-25 both contain 24-addresses to colors.
$83/A990 7B TDC ; Clear 16-bit A $83/A991 AD A6 17 LDA $17A6 [$83:17A6] A:0000 X:DCD4 Y:9E53 P:envMxdiZC $83/A994 AA TAX A:0010 X:DCD4 Y:9E53 P:envMxdizC $83/A995 86 06 STX $06 [$00:0006] A:0010 X:0010 Y:9E53 P:envMxdizC $83/A997 AD A7 17 LDA $17A7 [$83:17A7] A:0010 X:0010 Y:9E53 P:envMxdizC $83/A99A C2 20 REP #$20 A:0000 X:0010 Y:9E53 P:envMxdiZC $83/A99C 0A ASL A A:0000 X:0010 Y:9E53 P:envmxdiZC $83/A99D A8 TAY A:0000 X:0010 Y:9E53 P:envmxdiZc $83/A99E A2 00 00 LDX #$0000 A:0000 X:0010 Y:0000 P:envmxdiZc $83/A9A1 C2 20 REP #$20 A:0000 X:0000 Y:0000 P:envmxdiZc $83/A9A3 B7 23 LDA [$23],y[$9C:DCD4] A:0000 X:0000 Y:0000 P:envmxdiZc $83/A9A5 85 02 STA $02 [$00:0002] A:0042 X:0000 Y:0000 P:envmxdizc
$83/A9A7 B7 20 LDA [$20],y[$00:124B] A:0042 X:0000 Y:0000 P:envmxdizc $83/A9A9 85 00 STA $00 [$00:0000] A:0000 X:0000 Y:0000 P:envmxdiZc
buffer color
$83/A9AB E2 20 SEP #$20 A:0000 X:0000 Y:0000 P:envmxdiZc $83/A9AD 29 1F AND #$1F A:0000 X:0000 Y:0000 P:envMxdiZc $83/A9AF 85 04 STA $04 [$00:0004] A:0000 X:0000 Y:0000 P:envMxdiZc
exempt color
$83/A9B1 0A ASL A A:0000 X:0000 Y:0000 P:envMxdiZc $83/A9B2 0A ASL A A:0000 X:0000 Y:0000 P:envMxdiZc $83/A9B3 0A ASL A A:0000 X:0000 Y:0000 P:envMxdiZc $83/A9B4 9F 41 B1 7E STA $7EB141,x[$7E:B141] A:0000 X:0000 Y:0000 P:envMxdiZc
$83/A9B8 A5 02 LDA $02 [$00:0002] A:0000 X:0000 Y:0000 P:envMxdiZc $83/A9BA 29 1F AND #$1F A:0042 X:0000 Y:0000 P:envMxdizc $83/A9BC 38 SEC A:0002 X:0000 Y:0000 P:envMxdizc $83/A9BD E5 04 SBC $04 [$00:0004] A:0002 X:0000 Y:0000 P:envMxdizC $83/A9BF 9F 40 B1 7E STA $7EB140,x[$7E:B140] A:0002 X:0000 Y:0000 P:envMxdizC
$83/A9C3 C2 20 REP #$20 A:0002 X:0000 Y:0000 P:envMxdizC $83/A9C5 A5 00 LDA $00 [$00:0000] A:0002 X:0000 Y:0000 P:envmxdizC $83/A9C7 29 E0 03 AND #$03E0 A:0000 X:0000 Y:0000 P:envmxdiZC $83/A9CA 85 04 STA $04 [$00:0004] A:0000 X:0000 Y:0000 P:envmxdiZC $83/A9CC 4A LSR A A:0000 X:0000 Y:0000 P:envmxdiZC $83/A9CD 4A LSR A A:0000 X:0000 Y:0000 P:envmxdiZc $83/A9CE E2 20 SEP #$20 A:0000 X:0000 Y:0000 P:envmxdiZc $83/A9D0 9F 81 B1 7E STA $7EB181,x[$7E:B181] A:0000 X:0000 Y:0000 P:envMxdiZc $83/A9D4 C2 20 REP #$20 A:0000 X:0000 Y:0000 P:envMxdiZc $83/A9D6 A5 02 LDA $02 [$00:0002] A:0000 X:0000 Y:0000 P:envmxdiZc $83/A9D8 29 E0 03 AND #$03E0 A:0042 X:0000 Y:0000 P:envmxdizc $83/A9DB 38 SEC A:0040 X:0000 Y:0000 P:envmxdizc $83/A9DC E5 04 SBC $04 [$00:0004] A:0040 X:0000 Y:0000 P:envmxdizC $83/A9DE 4A LSR A A:0040 X:0000 Y:0000 P:envmxdizC $83/A9DF 4A LSR A A:0020 X:0000 Y:0000 P:envmxdizc $83/A9E0 4A LSR A A:0010 X:0000 Y:0000 P:envmxdizc $83/A9E1 4A LSR A A:0008 X:0000 Y:0000 P:envmxdizc $83/A9E2 4A LSR A A:0004 X:0000 Y:0000 P:envmxdizc $83/A9E3 E2 20 SEP #$20 A:0002 X:0000 Y:0000 P:envmxdizc $83/A9E5 9F 80 B1 7E STA $7EB180,x[$7E:B180] A:0002 X:0000 Y:0000 P:envMxdizc $83/A9E9 A5 01 LDA $01 [$00:0001] A:0002 X:0000 Y:0000 P:envMxdizc $83/A9EB 29 7C AND #$7C A:0000 X:0000 Y:0000 P:envMxdiZc $83/A9ED 85 04 STA $04 [$00:0004] A:0000 X:0000 Y:0000 P:envMxdiZc $83/A9EF 0A ASL A A:0000 X:0000 Y:0000 P:envMxdiZc $83/A9F0 9F 61 B1 7E STA $7EB161,x[$7E:B161] A:0000 X:0000 Y:0000 P:envMxdiZc $83/A9F4 A5 03 LDA $03 [$00:0003] A:0000 X:0000 Y:0000 P:envMxdiZc $83/A9F6 29 7C AND #$7C A:0000 X:0000 Y:0000 P:envMxdiZc $83/A9F8 38 SEC A:0000 X:0000 Y:0000 P:envMxdiZc $83/A9F9 E5 04 SBC $04 [$00:0004] A:0000 X:0000 Y:0000 P:envMxdiZC $83/A9FB 10 06 BPL $06 [$AA03] A:0000 X:0000 Y:0000 P:envMxdiZC $83/AA03 4A LSR A A:0000 X:0000 Y:0000 P:envMxdiZC $83/AA04 4A LSR A A:0000 X:0000 Y:0000 P:envMxdiZc $83/AA05 9F 60 B1 7E STA $7EB160,x[$7E:B160] A:0000 X:0000 Y:0000 P:envMxdiZc $83/AA09 C8 INY A:0000 X:0000 Y:0000 P:envMxdiZc $83/AA0A C8 INY A:0000 X:0000 Y:0001 P:envMxdizc $83/AA0B E8 INX A:0000 X:0000 Y:0002 P:envMxdizc $83/AA0C E8 INX A:0000 X:0001 Y:0002 P:envMxdizc $83/AA0D A5 00 LDA $00 [$00:0000] A:0000 X:0002 Y:0002 P:envMxdizc $83/AA0F C6 06 DEC $06 [$00:0006] A:0000 X:0002 Y:0002 P:envMxdiZc $83/AA11 D0 8E BNE $8E [$A9A1] A:0000 X:0002 Y:0002 P:envMxdizc $83/AA13 60 RTS A:0000 X:0020 Y:0020 P:envMxdiZc
Bank $84
$84/805F ?
$84/805F 8B PHB ; Preserve Data Bank on Stack $84/8060 4B PHK ; Change Data Bank to $84 $84/8061 AB PLB $84/8062 AD C9 11 LDA $11C9 [$84:11C9] A:0000 X:0040 Y:0000 P:eNvMxdizC $84/8065 CD CA 11 CMP $11CA [$84:11CA] A:0000 X:0040 Y:0000 P:envMxdiZC $84/8068 F0 03 BEQ $03 [$806D] A:0000 X:0040 Y:0000 P:envMxdiZC
Code is missing here
$84/806D D4 39 PEI ($39) ; Push $39-$3C on Stack $84/806F D4 3B PEI ($3B) $84/8071 7B TDC A:0000 X:0040 Y:0000 P:envMxdiZC $84/8072 AD F4 05 LDA $05F4 [$84:05F4] A:0000 X:0040 Y:0000 P:envMxdiZC $84/8075 0A ASL A A:0000 X:0040 Y:0000 P:envMxdiZC $84/8076 0A ASL A A:0000 X:0040 Y:0000 P:envMxdiZc $84/8077 A8 TAY A:0000 X:0040 Y:0000 P:envMxdiZc $84/8078 7B TDC A:0000 X:0040 Y:0000 P:envMxdiZc $84/8079 B9 7A 83 LDA $837A,y[$84:837A] A:0000 X:0040 Y:0000 P:envMxdiZc $84/807C 10 09 BPL $09 [$8087] A:0080 X:0040 Y:0000 P:eNvMxdizc $84/807E C9 FF CMP #$FF A:0080 X:0040 Y:0000 P:eNvMxdizc $84/8080 F0 39 BEQ $39 [$80BB] A:0080 X:0040 Y:0000 P:eNvMxdizc $84/8082 20 2E E7 JSR $E72E [$84:E72E] A:0080 X:0040 Y:0000 P:eNvMxdizc $84/8085 80 34 BRA $34 [$80BB] A:0040 X:EE21 Y:12C0 P:envMxdizc $84/8087 5A PHY A:0000 X:0026 Y:0008 P:envMxdiZc $84/8088 A8 TAY A:0000 X:0026 Y:0008 P:envMxdiZc $84/8089 B9 AE 17 LDA $17AE,y[$84:17AE] A:0000 X:0026 Y:0000 P:envMxdiZc $84/808C F0 26 BEQ $26 [$80B4] A:0001 X:0026 Y:0000 P:envMxdizc $84/808E C9 F0 CMP #$F0 A:0001 X:0026 Y:0000 P:envMxdizc $84/8090 B0 04 BCS $04 [$8096] A:0001 X:0026 Y:0000 P:envMxdizc $84/8092 C9 DC CMP #$DC A:0001 X:0026 Y:0000 P:envMxdizc $84/8094 B0 1E BCS $1E [$80B4] A:0001 X:0026 Y:0000 P:envMxdizc $84/8096 BE 3E 1E LDX $1E3E,y[$84:1E3E] A:0001 X:0026 Y:0000 P:envMxdizc $84/8099 BD 03 06 LDA $0603,x[$84:0603] A:0001 X:0000 Y:0000 P:envMxdiZc $84/809C F0 16 BEQ $16 [$80B4] A:0001 X:0000 Y:0000 P:envMxdizc $84/809E B9 DF 19 LDA $19DF,y[$84:19DF] A:0001 X:0000 Y:0000 P:envMxdizc $84/80A1 89 40 BIT #$40 A:0000 X:0000 Y:0000 P:envMxdiZc $84/80A3 D0 0F BNE $0F [$80B4] A:0000 X:0000 Y:0000 P:envMxdiZc $84/80A5 B9 DE 19 LDA $19DE,y[$84:19DE] A:0000 X:0000 Y:0000 P:envMxdiZc $84/80A8 89 02 BIT #$02 A:0000 X:0000 Y:0000 P:envMxdiZc $84/80AA D0 08 BNE $08 [$80B4] A:0000 X:0000 Y:0000 P:envMxdiZc $84/80AC BD C3 06 LDA $06C3,x[$84:06C3] A:0000 X:0000 Y:0000 P:envMxdiZc $84/80AF F0 03 BEQ $03 [$80B4] A:0008 X:0000 Y:0000 P:envMxdizc $84/80B1 20 CC 80 JSR $80CC [$84:80CC] A:0008 X:0000 Y:0000 P:envMxdizc $84/80B4 7A PLY A:00FF X:0040 Y:89D3 P:envMxdiZC $84/80B5 C8 INY A:00FF X:0040 Y:0008 P:envMxdizC $84/80B6 98 TYA A:00FF X:0040 Y:0009 P:envMxdizC $84/80B7 89 03 BIT #$03 A:0009 X:0040 Y:0009 P:envMxdizC $84/80B9 D0 BD BNE $BD [$8078] A:0009 X:0040 Y:0009 P:envMxdizC $84/80BB AD F4 05 LDA $05F4 [$84:05F4] A:0040 X:EE21 Y:12C0 P:envMxdizc $84/80BE 1A INC A A:0000 X:EE21 Y:12C0 P:envMxdiZc $84/80BF 29 07 AND #$07 A:0001 X:EE21 Y:12C0 P:envMxdizc $84/80C1 8D F4 05 STA $05F4 [$84:05F4] A:0001 X:EE21 Y:12C0 P:envMxdizc $84/80C4 FA PLX ; Restore $39-$3B from Stack $84/80C5 86 3B STX $3B $84/80C7 FA PLX $84/80C8 86 39 STX $39 $84/80CA AB PLB ; Restore Data Bank $84/80CB 6B RTL
$84/B98A Battle figure moving animation?
This is executed in the title screen demo, when the soldier jumps over the gap and beats the archeress(?)
This executes an VRAM DMA - I can imagine this is the graphics update for a marching game figure animation.
There are some values to this subroutine carried in before it is called:
A contains some Index for a table at $84/BA03 ($0002:3A03)
Y contains the VRAM destination address
$20 to $22 contains an offset for the DMA Source Address
$84/B98A 8B PHB ; Preserve Data Bank on Stack $84/B98B 4B PHK ; Change Data Bank to $84 $84/B98C AB PLB $84/B98D D4 00 PEI ($00) ; Push current content of $00 on stack $84/B98F D4 02 PEI ($02) ; Push current content of $02 on stack $84/B991 D4 0C PEI ($0C) ; Push current content of $0C on stack $84/B993 D4 0E PEI ($0E) ; Push current content of $0E on stack $84/B995 09 00 ORA #$00 ; Set the "focus" of the flag register back on the Accumulator??? $84/B997 10 0A BPL $0A ; [$B9A3] Branch if A value is between #$00 and #$7F $84/B999 29 7F AND #$7F ; If not, remove the MSB anyways $84/B99B 85 00 STA $00 ; Store Original A minus MSB in $00 $84/B99D A9 02 LDA #$02 ; Set up a counter for left/right side of the graphic $84/B99F 85 01 STA $01 ; Yeah, I wouldn't understand that comment, too $84/B9A1 80 04 BRA $04 ; [$B9A7]
Code is missing here
$84/B9A7 84 02 STY $02 ; Buffer VRAM destination in $02 $84/B9A9 A2 40 00 LDX #$0040 ; Number of Bytes to transfer $84/B9AC 86 0C STX $0C $84/B9AE A9 80 LDA #$80 ; VRAM settings for the DMA (for $2115) $84/B9B0 85 0E STA $0E $84/B9B2 7B TDC ; Clear 16-bit A $84/B9B3 A5 00 LDA $00 ; Load Original A value $84/B9B5 0A ASL A ; Multiply by 4 (4 byte sized table entries?) $84/B9B6 0A ASL A $84/B9B7 A8 TAY ; Transfer in Y $84/B9B8 7B TDC ; Clear 16-bit A $84/B9B9 B9 03 BA LDA $BA03,y ; Load Table entry $84/B9BC C9 FF CMP #$FF ; ??? $84/B9BE F0 0F BEQ $0F ; [$B9CF] ??? $84/B9C0 C2 20 REP #$20 ; Multiply loaded byte by #$20 (thirty-two) $84/B9C2 EB XBA $84/B9C3 4A LSR A $84/B9C4 4A LSR A $84/B9C5 4A LSR A $84/B9C6 65 20 ADC $20 ; Add some DMA Source Address Offset that was set up before this subroutine $84/B9C8 AA TAX ; Transfer in X as DMA Source Address $84/B9C9 E2 20 SEP #$20 $84/B9CB A5 22 LDA $22 ; Load $22 in A as DMA SOurce Bank $84/B9CD 80 05 BRA $05 ; [$B9D4] Branch
Code is missing here
$84/B9D4 5A PHY ; Push Y on stack - it's the Load Index for the table at $BA03 $84/B9D5 A4 02 LDY $02 ; Load VRAM destination address in Y $84/B9D7 22 24 9F 80 JSL $809F24 ; VRAM DMA $84/B9DB 7A PLY ; Restore the Load Index for the table at $BA03 $84/B9DC C8 INY ; Increment it $84/B9DD 98 TYA ; Copy it to A $84/B9DE 29 03 AND #$03 ; Look if it has done 4 graphics; 4 sprite graphics per Unit $84/B9E0 F0 13 BEQ $13 ; [$B9F5] If so, exit $84/B9E2 7B TDC ; Clear 16-bit A $84/B9E3 A9 20 LDA #$20 ; ??? This has something to do with the positioning of sprites in VRAM $84/B9E5 C6 01 DEC $01 ; ??? The right sprite is $20 away from the left, the one below $100 ($20+$E0) $84/B9E7 D0 02 BNE $02 ; [$B9EB] ??? $01 is a counter for this, whether it should add... $84/B9E9 A9 E0 LDA #$E0 ; ??? $20 or $E0 to get to the VRAM address to reach the next graphic $84/B9EB C2 21 REP #$21 ; Add this $20 or $E0 to the VRAM address, store it in it's buffer... $84/B9ED 65 02 ADC $02 $84/B9EF 85 02 STA $02 $84/B9F1 E2 20 SEP #$20 $84/B9F3 80 C3 BRA $C3 ; [$B9B8] ... and loop $84/B9F5 FA PLX ; Restore the old values of $0E, $0C, $02 and $00 $84/B9F6 86 0E STX $0E $84/B9F8 FA PLX $84/B9F9 86 0C STX $0C $84/B9FB FA PLX $84/B9FC 86 02 STX $02 $84/B9FE FA PLX $84/B9FF 86 00 STX $00 $84/BA01 AB PLB ; Restore old bank $84/BA02 6B RTL
Bank $86
$86/8019 ?
This is executed in the title screen demo, when the soldier jumps over the gap and beats the archeress(?)
$86/8019 8B PHB ; Preserve Bank on Stack $86/801A 4B PHK ; Change Bank $86/801B AB PLB $86/801C A2 20 05 LDX #$0520 ; [assumed] start of the OAM high table buffer $86/801F A0 20 03 LDY #$0320 ; [assumed] start of the OAM low table buffer $86/8022 CC 45 05 CPY $0545 ; Is this actually the position? $86/8025 D0 06 BNE $06 ; [$802D] If it isn't, skip this next part $86/8027 A2 00 03 LDX #$0300 ; ??? Change position of OAM high table buffer? $86/802A A0 00 01 LDY #$0100 ; ??? Change position of OAM high table buffer? $86/802D 86 26 STX $26 ; Store in Temp Register $86/802F 84 29 STY $29 ; Store in Temp Register $86/8031 C2 20 REP #$20 $86/8033 AD 43 05 LDA $0543 ; ??? Load number currently used sprites? $86/8036 0A ASL A $86/8037 0A ASL A ; Multiply by 4 (each sprite needs 4 bytes in Low Table) $86/8038 65 29 ADC $29 ; Add Low Table Offset $86/803A 85 29 STA $29 ; Store in $29 the address of the first unused Low Table entry $86/803C AD 43 05 LDA $0543 ; ??? Load number currently used sprites? $86/803F 4A LSR A $86/8040 4A LSR A ; Divide by 4 (each sprite needs 2 bits in High Table) $86/8041 65 26 ADC $26 ; Add High Table Offset $86/8043 85 26 STA $26 ; Store in $26 the address of the first unused High Table entry $86/8045 E2 20 SEP #$20 $86/8047 A9 80 LDA #$80 ; Max. number of sprites $86/8049 38 SEC $86/804A ED 43 05 SBC $0543 ; Subtract number of used sprites(?) $86/804D 85 2B STA $2B ; Store in $2B (Number of free sprites) $86/804F A9 80 LDA #$80 ; ??? $86/8051 85 28 STA $28 ; ??? $86/8053 A0 00 00 LDY #$0000 ; ??? $86/8056 BE 83 0E LDX $0E83,y ; ??? $86/8059 30 4A BMI $4A ; [$80A5] $86/805B 5A PHY ; ??? $86/805C 7B TDC ; ??? $86/805D BD C3 09 LDA $09C3,x ; ??? $86/8060 10 05 BPL $05 ; [$8067] $86/8062 20 81 81 JSR $8181 ; ??? $86/8065 80 37 BRA $37 ; [$809E]
Code is missing here
$86/809E 7A PLY ; ??? $86/809F C8 INY ; ??? $86/80A0 C8 INY ; ??? $86/80A1 A5 2B LDA $2B ; ??? $86/80A3 D0 B1 BNE $B1 ; [$8056] $86/80A5 20 96 84 JSR $8496 ; Check if more Sprites are needed and clear OAM entries for it $86/80A8 A0 20 03 LDY #$0320 ; Change OAM Buffer address from $100 to $320 or vice versa $86/80AB CC 45 05 CPY $0545 $86/80AE D0 03 BNE $03 ; [$80B3] Take branch if it isn't $320 $86/80B0 A0 00 01 LDY #$0100 $86/80B3 8C 45 05 STY $0545 $86/80B6 A9 01 LDA #$01 ; Set OAM Update flag $86/80B8 8D 40 05 STA $0540 $86/80BB AB PLB ; Restore Program Bank $86/80BC 6B RTL
$86/8496 Check if more Sprites are needed and clear OAM entries for it
This seems to check if the program needs more, less or the same number of sprites in the next frame as it does in the current one.
$86/8496 A2 42 05 LDX #$0542 ; Load Number of free Sprites in OAM at $7E0100 $86/8499 A0 20 03 LDY #$0320 ; Test if OAM buffer at $320 is active or not $86/849C CC 45 05 CPY $0545 $86/849F D0 03 BNE $03 ; [$84A4] If $100 is active, keep X = #$0542, else... $86/84A1 A2 41 05 LDX #$0541 ; replace it with #$0541 $86/84A4 86 02 STX $02 ; Temp store it $86/84A6 7B TDC ; Clear 16-bit A $86/84A7 A5 2B LDA $2B ; Load number of free sprites $86/84A9 F0 28 BEQ $28 ; [$84D3] Exit if none is free $86/84AB 38 SEC $86/84AC F2 02 SBC ($02) ; Subtract the old value (in $0541 or $0542) $86/84AE 90 17 BCC $17 ; [$84C7] Branch if the number of needed sprites has decreased $86/84B0 F0 15 BEQ $15 ; [$84C7] Branch if the number of needed sprites is the same as before
If more sprites are needed
$86/84B2 A8 TAY ; Y contains the additional amount of sprites needed in this frame $86/84B3 A6 29 LDX $29 ; Load start point of OAM low table $86/84B5 C2 20 REP #$20 $86/84B7 A9 00 E8 LDA #$E800 ; Clear the additionally needed OAM Low Table entries $86/84BA 95 00 STA $00,x ; Sprite position: 0 to the left, appear at scanline 232 (outside the visible area) $86/84BC 74 02 STZ $02,x ; H/V flip, priority 2, palette 4 $86/84BE E8 INX ; Increment write index to point to the next entry's start $86/84BF E8 INX $86/84C0 E8 INX $86/84C1 E8 INX $86/84C2 88 DEY ; Decrement number of additionally needed sprite entries $86/84C3 D0 F5 BNE $F5 ; [$84BA] Loop until all of them are done $86/84C5 E2 20 SEP #$20
If less or the same number of sprites are needed
$86/84C7 A5 28 LDA $28 ; ??? Probably the number of used OAM entries (= sprites)? $86/84C9 C9 80 CMP #$80 ; ??? Are all sprites used(?) $86/84CB F0 06 BEQ $06 ; [$84D3] ??? Exit if equal $86/84CD 4A LSR A ; ??? $86/84CE 4A LSR A ; ??? $86/84CF 90 FC BCC $FC ; [$84CD] ??? $86/84D1 92 26 STA ($26) ; ??? $86/84D3 A5 2B LDA $2B ; Store number of free Sprites in $0541/$0542 $86/84D5 92 02 STA ($02) $86/84D7 60 RTS
$88/84D8 ?
$86/84D8 8B PHB ; Buffer Data Bank on Stack $86/84D9 A9 7E LDA #$7E ; Set Data Bank to $7E $86/84DB 48 PHA $86/84DC AB PLB $86/84DD A0 C4 BD LDY #$BDC4 ; Write "$0000" for #$80 bytes at $7E/BDC4 $86/84E0 A2 80 00 LDX #$0080 $86/84E3 7B TDC $86/84E4 C2 20 REP #$20 $86/84E6 22 C8 9D 80 JSL $809DC8 ; Long Jump to Write Empty Tilemap in WRAM $86/84EA E2 20 SEP #$20 A:0000 X:AD38 Y:BE44 P:eNvmxdIzc $86/84EC A0 03 00 LDY #$0003 A:0000 X:AD38 Y:BE44 P:eNvMxdIzc $86/84EF A2 79 00 LDX #$0079 A:0000 X:AD38 Y:0003 P:envMxdIzc $86/84F2 22 B6 A6 9B JSL $9BA6B6[$9B:A6B6] A:0000 X:0079 Y:0003 P:envMxdIzc $86/84F6 E8 INX A:0000 X:0079 Y:0003 P:envMxdIzc $86/84F7 88 DEY A:0000 X:007A Y:0003 P:envMxdIzc $86/84F8 D0 F8 BNE $F8 [$84F2] A:0000 X:007A Y:0002 P:envMxdIzc $86/84FA AB PLB ; Restore Data Bank on Stack $86/84FB 6B RTL
Bank $88
$88/8000 ?
$88/8000 AE 47 05 LDX $0547 ; ??? ("Has-Joypad-inputs"-register?) $88/8003 F0 4F BEQ $4F ; [$8054] $88/8005 A5 A1 LDA $A1 [$00:00A1] A:0000 X:0101 Y:0004 P:enVMxdIzC $88/8007 89 81 BIT #$81 A:0000 X:0101 Y:0004 P:enVMxdIZC $88/8009 D0 00 BNE $00 ; [$800B] this line could be removed(?) $88/800B A2 00 00 LDX #$0000 A:0000 X:0101 Y:0004 P:enVMxdIZC $88/800E 7B TDC A:0000 X:0000 Y:0004 P:enVMxdIZC $88/800F AD 5B 05 LDA $055B [$80:055B] A:0000 X:0000 Y:0004 P:enVMxdIZC $88/8012 29 7F AND #$7F A:0000 X:0000 Y:0004 P:enVMxdIZC $88/8014 F0 21 BEQ $21 [$8037] A:0000 X:0000 Y:0004 P:enVMxdIZC
Code is missing here
$88/8037 BD 47 05 LDA $0547,x[$80:0547] A:0000 X:0000 Y:0004 P:enVMxdIZC $88/803A F0 18 BEQ $18 [$8054] A:0001 X:0000 Y:0004 P:enVMxdIzC $88/803C 7B TDC A:0001 X:0000 Y:0004 P:enVMxdIzC $88/803D 8A TXA A:0000 X:0000 Y:0004 P:enVMxdIZC $88/803E 0A ASL A A:0000 X:0000 Y:0004 P:enVMxdIZC $88/803F AA TAX A:0000 X:0000 Y:0004 P:enVMxdIZc $88/8040 BC 49 05 LDY $0549,x ; Joypad x Inputs $88/8043 8C 61 05 STY $0561 $88/8046 BC 51 05 LDY $0551,x ; Last frame's Joypad x Inputs $88/8049 8C 63 05 STY $0563 $88/804C BC 4D 05 LDY $054D,x ; Joypad x held buttons $88/804F 8C 65 05 STY $0565 $88/8052 80 0C BRA $0C ; [$8060] Exit
Code is missing here
$88/8060 6B RTL
$88/9E40 ?
$88/9E40 8B PHB ; Preserve Program Bank $88/9E41 4B PHK $88/9E42 AB PLB $88/9E43 A0 00 A8 LDY #$A800 ; Setup write address for the Tilemap Rectangle Builder $88/9E46 84 20 STY $20 ; This time, it's the BG3 Buffer for the Battle Stats Menu $88/9E48 A9 7E LDA #$7E $88/9E4A 85 22 STA $22 $88/9E4C A9 08 LDA #$08 ; Tilemap Rectangle Builder: Number of Columns $88/9E4E 85 00 STA $00 $88/9E50 A9 04 LDA #$04 ; Tilemap Rectangle Builder: Number of Rows $88/9E52 85 02 STA $02 $88/9E54 A0 42 00 LDY #$0042 ; Where to write index: $42 Bytes after the buffer begin $88/9E57 A5 04 LDA $04 [$00:0004] A:2004 X:0000 Y:0042 P:envMxdizc $88/9E59 05 05 ORA $05 [$00:0005] A:2008 X:0000 Y:0042 P:envMxdizc $88/9E5B D0 09 BNE $09 [$9E66] A:2008 X:0000 Y:0042 P:envMxdizc
Code is missing here
$88/9E66 A2 9F 9E LDX #$9E9F A:2008 X:0000 Y:0042 P:envMxdizc $88/9E69 22 05 A4 80 JSL $80A405[$80:A405] A:2008 X:9E9F Y:0042 P:eNvMxdizc $88/9E6D A9 06 LDA #$06 ; Tilemap Rectangle Builder: Number of Columns $88/9E6F 85 00 STA $00 $88/9E71 A9 02 LDA #$02 ; Tilemap Rectangle Builder: Number of Rows $88/9E73 85 02 STA $02 $88/9E75 A0 B2 00 LDY #$00B2 A:0102 X:9EDF Y:0142 P:envMxdizc $88/9E78 A5 06 LDA $06 [$00:0006] A:0102 X:9EDF Y:00B2 P:envMxdizc $88/9E7A D0 09 BNE $09 [$9E85] A:0103 X:9EDF Y:00B2 P:envMxdizc
Code is missing here
$88/9E85 A2 DF 9E LDX #$9EDF A:0103 X:9EDF Y:00B2 P:envMxdizc $88/9E88 22 05 A4 80 JSL $80A405[$80:A405] A:0103 X:9EDF Y:00B2 P:eNvMxdizc $88/9E8C 22 EB 9E 80 JSL $809EEB ; VRAM DMA of the following data: $88/9E90 40 A8 7E Address: $7E/A840 $88/9E93 20 3C VRAM Address: $3C20 (Battle Stat Menu BG3 Tilemap + $20, skips the menu border tile line) $88/9E95 D2 00 Transfer $00D2 Bytes $88/9E97 22 D9 BA 82 JSL $82BAD9[$82:BAD9] A:A880 X:0200 Y:3C20 P:eNvMxdizc $88/9E9B AB PLB ; Restore Program Bank $88/9E9C 6B RTL
Bank $89
$89/B62A ?
During the new game creation process, this is executed when one of these artworks gets loaded
$89/B62A 22 EB 9E 80 JSL $809EEB ; VRAM DMA of the following data: $89/B62E 80 F1 7F Address: $7F/F180 $89/B631 C0 7E VRAM Address: $7EC0 $89/B633 00 01 Transfer $0100 Bytes $89/B635 60 RTS
$89/BE00 ?
During the new game creation process, this is executed when one of these artworks gets loaded
This sets the BG2 tilemap (which is the artwork of the figure)
$89/BE00 A2 80 ED LDX #$ED80 ; Set up data transfer to $7FED80 $89/BE03 86 20 STX $20 $89/BE05 A9 7F LDA #$7F $89/BE07 85 22 STA $22 $89/BE09 A6 DF LDX $DF [$00:00DF] A:FF7F X:ED80 Y:61D7 P:envMxdizC $89/BE0B 7B TDC A:FF7F X:2000 Y:61D7 P:envMxdizC $89/BE0C BD 27 00 LDA $0027,x[$7E:2027] A:0000 X:2000 Y:61D7 P:envMxdiZC $89/BE0F EB XBA A:0002 X:2000 Y:61D7 P:envMxdizC $89/BE10 C2 20 REP #$20 A:0200 X:2000 Y:61D7 P:envMxdiZC $89/BE12 0A ASL A A:0200 X:2000 Y:61D7 P:envmxdiZC $89/BE13 0A ASL A A:0400 X:2000 Y:61D7 P:envmxdizc $89/BE14 65 5C ADC $5C [$00:005C] A:0800 X:2000 Y:61D7 P:envmxdizc $89/BE16 AA TAX A:59D7 X:2000 Y:61D7 P:envmxdizc $89/BE17 E2 20 SEP #$20 A:59D7 X:59D7 Y:61D7 P:envmxdizc $89/BE19 A9 7E LDA #$7E $89/BE1B A0 00 04 LDY #$0400 ; Transfer $0400 Byte $89/BE1E 22 33 8D 9A JSL $9A8D33 ; Transfer Data from $7E/59D7 to $7F/ED80 $89/BE22 A9 80 LDA #$80 ; VRAM transfer settings ($2115) $89/BE24 85 0E STA $0E $89/BE26 A2 00 04 LDX #$0400 ; Number of Bytes to transfer: #$400 $89/BE29 86 0C STX $0C $89/BE2B A0 C0 7C LDY #$7CC0 ; VRAM Destination $7CC0 $89/BE2E A2 80 ED LDX #$ED80 ; Source Address: $7F/ED80 $89/BE31 A9 7F LDA #$7F $89/BE33 22 24 9F 80 JSL $809F24 ; VRAM DMA $89/BE37 60 RTS
Bank $8F
$8F/83DB C5 FA CMP $FA ; ??? $8F/83DD D0 2B BNE $2B [$840A] $8F/83DF A5 F5 LDA $F5 $8F/83E1 05 F6 ORA $F6 $8F/83E3 05 F7 ORA $F7 $8F/83E5 F0 21 BEQ $21 ; If $F5/$F6/$F7 are empty, exit $8F/83E7 A5 F5 LDA $F5 ; Transfer buffer to $2140 $8F/83E9 8D 40 21 STA $2140 $8F/83EC A5 F6 LDA $F6 ; Transfer buffer to $2141 $8F/83EE 8D 41 21 STA $2141 $8F/83F1 A5 F7 LDA $F7 ; Transfer buffer to $2142 $8F/83F3 8D 42 21 STA $2142 $8F/83F6 64 F5 STZ $F5 ; Clear buffers $F5, $F6 and $F7 $8F/83F8 64 F6 STZ $F6 $8F/83FA 64 F7 STZ $F7 $8F/83FC A5 FA LDA $FA ; Transfer buffer to $2143 $8F/83FE 8D 43 21 STA $2143 $8F/8401 1A INC A ; Increment $FA value $8F/8402 29 7F AND #$7F ; If it turned #$80 ==> #$00 $8F/8404 F0 FB BEQ $FB ; If #$00 ==> Increment again $8F/8406 85 FA STA $FA ; Store back in $FA $8F/8408 18 CLC ; ??? $8F/8409 6B RTL
Bank $99
$99/8A23 ?
$99/8A23 E2 20 SEP #$20 A:937E X:932C Y:0100 P:envMxdizC $99/8A25 A6 E1 LDX $E1 [$00:00E1] A:937E X:932C Y:0100 P:envMxdizC $99/8A27 BC 06 00 LDY $0006,x[$7E:3306] A:937E X:3300 Y:0100 P:envMxdizC $99/8A2A 84 E3 STY $E3 [$00:00E3] A:937E X:3300 Y:375A P:envMxdizC $99/8A2C BD 08 00 LDA $0008,x[$7E:3308] A:937E X:3300 Y:375A P:envMxdizC $99/8A2F 85 E5 STA $E5 [$00:00E5] A:937E X:3300 Y:375A P:envMxdizC $99/8A31 E2 20 SEP #$20 A:937E X:3300 Y:375A P:envMxdizC $99/8A33 A6 E1 LDX $E1 [$00:00E1] A:937E X:3300 Y:375A P:envMxdizC $99/8A35 7B TDC A:937E X:3300 Y:375A P:envMxdizC $99/8A36 BD 0B 00 LDA $000B,x[$7E:330B] A:0000 X:3300 Y:375A P:envMxdiZC $99/8A39 F0 0A BEQ $0A [$8A45] A:0000 X:3300 Y:375A P:envMxdiZC $99/8A45 7B TDC A:0000 X:3300 Y:375A P:envMxdiZC $99/8A46 A7 E3 LDA [$E3] [$7E:375A] A:0000 X:3300 Y:375A P:envMxdiZC $99/8A48 C9 FF CMP #$FF A:0065 X:3300 Y:375A P:envMxdizC $99/8A4A D0 08 BNE $08 [$8A54] A:0065 X:3300 Y:375A P:envMxdizc $99/8A54 C2 20 REP #$20 A:0065 X:3300 Y:375A P:envMxdizc $99/8A56 0A ASL A A:0065 X:3300 Y:375A P:envmxdizc $99/8A57 AA TAX A:00CA X:3300 Y:375A P:envmxdizc $99/8A58 E6 E3 INC $E3 [$00:00E3] A:00CA X:00CA Y:375A P:envmxdizc $99/8A5A 7C 77 8A JMP ($8A77,x)[$99:901B] A:00CA X:00CA Y:375A P:envmxdizc
$99/8A77 Table for $99/8A23
01 92 Entry #$00 0B 92 Entry #$01 15 92 Entry #$02 26 92 Entry #$03 37 92 Entry #$04 4F 92 Entry #$05 60 92 Entry #$06 71 92 Entry #$07 81 92 Entry #$08 8E 92 Entry #$09 9B 92 Entry #$0A A8 92 Entry #$0B B5 92 Entry #$0C BF 92 Entry #$0D 71 8C Entry #$0E 31 8A Entry #$0F - Direct Return to the Main Subroutine F0 92 Entry #$10 20 93 Entry #$11 71 8C Entry #$12 50 93 Entry #$13 E7 93 Entry #$14 71 8C Entry #$15 BB 9B Entry #$16 DC 9B Entry #$17 0D 9C Entry #$18 18 9C Entry #$19 4A 9C Entry #$1A 91 9C Entry #$1B D0 9C Entry #$1C DA 9C Entry #$1D DA 9C Entry #$1E 71 8C Entry #$1F 73 8C Entry #$20 79 98 Entry #$21 9D 99 Entry #$22 92 8C Entry #$23 0B 99 Entry #$24 2F 9A Entry #$25 03 99 Entry #$26 27 9A Entry #$27 ED 94 Entry #$28 F1 96 Entry #$29 76 97 Entry #$2A F8 97 Entry #$2B E5 94 Entry #$2C E9 96 Entry #$2D 7F 98 Entry #$2E A3 99 Entry #$2F 6A 9F Entry #$30 96 9F Entry #$31 2E BD Entry #$32 DA C2 Entry #$33 00 C5 Entry #$34 12 C5 Entry #$35 CE C0 Entry #$36 28 C7 Entry #$37 28 C8 Entry #$38 43 C8 Entry #$39 AB BE Entry #$3A EA 9C Entry #$3B F3 9C Entry #$3C F7 C5 Entry #$3D 5E B2 Entry #$3E 56 B2 Entry #$3F D0 B2 Entry #$40 C4 B2 Entry #$41 DA 9C Entry #$42 DA 9C Entry #$43 EE BC Entry #$44 DE 9C Entry #$45 DE 9C Entry #$46 E6 9F Entry #$47 DE 9C Entry #$48 DE 9C Entry #$49 EF B5 Entry #$4A EF B5 Entry #$4B B8 9A Entry #$4C 65 9E Entry #$4D DE 9E Entry #$4E E9 9E Entry #$4F BA B1 Entry #$50 38 9F Entry #$51 AB C7 Entry #$52 EF C7 Entry #$53 25 C5 Entry #$54 3A C4 Entry #$55 75 C4 Entry #$56 5E C8 Entry #$57 BD 9F Entry #$58 FD 9F Entry #$59 27 A0 Entry #$5A C0 BE Entry #$5B 73 C0 Entry #$5C ED C0 Entry #$5D 2B C0 Entry #$5E FA C3 Entry #$5F FD 9B Entry #$60 05 BC Entry #$61 E4 BC Entry #$62 DA C2 Entry #$63 49 A0 Entry #$64 1B 90 Entry #$65 - Load Music(?)
$99/901B ?
$99/901B E2 20 SEP #$20 A:00CA X:00CA Y:375A P:envmxdizc $99/901D AD AC 17 LDA $17AC [$7E:17AC] A:00CA X:00CA Y:375A P:envMxdizc $99/9020 48 PHA A:0000 X:00CA Y:375A P:envMxdiZc $99/9021 9C AC 17 STZ $17AC [$7E:17AC] A:0000 X:00CA Y:375A P:envMxdiZc $99/9024 7B TDC A:0000 X:00CA Y:375A P:envMxdiZc $99/9025 A7 E3 LDA [$E3] [$7E:375B] A:0000 X:00CA Y:375A P:envMxdiZc $99/9027 C9 4D CMP #$4D A:000D X:00CA Y:375A P:envMxdizc $99/9029 B0 14 BCS $14 [$903F] A:000D X:00CA Y:375A P:eNvMxdizc $99/902B A8 TAY A:000D X:00CA Y:375A P:eNvMxdizc $99/902C A2 5E 90 LDX #$905E A:000D X:00CA Y:000D P:envMxdizc $99/902F A9 99 LDA #$99 A:000D X:905E Y:000D P:eNvMxdizc $99/9031 22 8F EF 81 JSL $81EF8F[$81:EF8F] A:0099 X:905E Y:000D P:eNvMxdizc $99/9035 B0 08 BCS $08 [$903F] A:0020 X:905F Y:000D P:envMxdizc $99/9037 A7 E3 LDA [$E3] [$7E:375B] A:0020 X:905F Y:000D P:envMxdizc $99/9039 22 F2 AE 80 JSL $80AEF2 ; Load Music $99/903D 80 14 BRA $14 [$9053] A:0000 X:33CC Y:D686 P:envMxdizc $99/9053 68 PLA A:0000 X:33CC Y:D686 P:envMxdizc $99/9054 8D AC 17 STA $17AC [$7E:17AC] A:0000 X:33CC Y:D686 P:envMxdiZc $99/9057 C2 20 REP #$20 A:0000 X:33CC Y:D686 P:envMxdiZc $99/9059 E6 E3 INC $E3 [$00:00E3] A:0000 X:33CC Y:D686 P:envmxdiZc $99/905B 4C 31 8A JMP $8A31 [$99:8A31] A:0000 X:33CC Y:D686 P:envmxdizc
Bank $9A
$9A/8D33 Transfer Data Loop
This is used at least during the new game creation process, this is executed when one of these artworks gets loaded
This subroutine moves data from one position to another via loop. As it is via loop, it makes more sense to use this method for smaller amounts of data. Should be noted that the transfer works with an 8-bit Accumulator, so it can transfer an odd number of bytes, too.
These registers have to contain the settings for this transfer:
A has to contain the bank where the data is (like, $7E or $7F)
X contains the address on that bank where the data is
Y contains the number of bytes to transfer
$20-$22 contains the 24-bit address where to store
$9A/8D33 8B PHB ; Preserve current Program Bank $9A/8D34 48 PHA ; Set the value in A as new Bank $9A/8D35 AB PLB $9A/8D36 5A PHY ; Put Y (number of Bytes to transfer) on stack $9A/8D37 A0 00 00 LDY #$0000 ; Set up write index $9A/8D3A BD 00 00 LDA $0000,x ; Load Byte $9A/8D3D 97 20 STA [$20],y ; Store Byte $9A/8D3F E8 INX ; Increment Read and Write Index $9A/8D40 C8 INY $9A/8D41 C2 20 REP #$20 ; This loads the number of bytes from stack, decrements it and stores it back $9A/8D43 A3 01 LDA $01,s $9A/8D45 3A DEC A $9A/8D46 83 01 STA $01,s $9A/8D48 E2 20 SEP #$20 $9A/8D4A D0 EE BNE $EE ; [$8D3A] Loop until all bytes are done $9A/8D4C 7A PLY $9A/8D4D AB PLB ; Restore Program Bank $9A/8D4E 6B RTL
Bank $9B
$9B/80DE ?
This subroutines main part is about copying three palettes; I *think* this is for the small figure you can see in the Battle Stats menu; that figure is on a BG plain, while the very same graphic you see above is a sprite. So, I think this is for this.
$9B/80DE 8B PHB ; Buffer Program Bank on Stack $9B/80DF 4B PHK $9B/80E0 AB PLB ; Change Program Bank $9B/80E1 DA PHX ; Buffer X and Y $9B/80E2 5A PHY $9B/80E3 D4 00 PEI ($00) ; Buffer registers $00 to $0F and $20 to $2B $9B/80E5 D4 02 PEI ($02) $9B/80E7 D4 04 PEI ($04) $9B/80E9 D4 06 PEI ($06) $9B/80EB D4 08 PEI ($08) $9B/80ED D4 0A PEI ($0A) $9B/80EF D4 0C PEI ($0C) $9B/80F1 D4 0E PEI ($0E) $9B/80F3 D4 20 PEI ($20) $9B/80F5 D4 22 PEI ($22) $9B/80F7 D4 24 PEI ($24) $9B/80F9 D4 26 PEI ($26) $9B/80FB D4 28 PEI ($28) $9B/80FD D4 2A PEI ($2A) $9B/80FF A2 00 00 LDX #$0000 ; Set up counter $9B/8102 BD AE 17 LDA $17AE,x ; Load each figure's graphic number (i. e. "this figure is Denam, it has Denam graphics") $9B/8105 F0 3B BEQ $3B ; [$8142] Go to next figure if this is empty $9B/8107 BC 3E 1E LDY $1E3E,x ; ??? $9B/810A C9 F0 CMP #$F0 ; ??? (Note to self: It's CMP, not CPY!) $9B/810C F0 16 BEQ $16 ; [$8124] ??? $9B/810E BD DE 19 LDA $19DE,x ; ??? (Status effects?) $9B/8111 89 10 BIT #$10 ; ??? $9B/8113 F0 0F BEQ $0F ; [$8124] ??? $9B/8124 B9 03 07 LDA $0703,y ; ??? $9B/8127 89 06 BIT #$06 ; ??? $9B/8129 F0 17 BEQ $17 ; [$8142] ??? $9B/812B 89 08 BIT #$08 ; ??? $9B/812D F0 13 BEQ $13 ; [$8142] ???
Code is missing here
$9B/8142 E8 INX ; Increment Loop counter $9B/8143 E8 INX $9B/8144 E0 28 00 CPX #$0028 ; Loop until every figure is done $9B/8147 90 B9 BCC $B9 ; [$8102] $9B/8149 AD B9 05 LDA $05B9 ; ??? $9B/814C 29 18 AND #$18 ; ??? $9B/814E D0 1D BNE $1D ; [$816D] ???
Code is missing here
$9B/816D C2 20 REP #$20 ; This sets up and executes a loop that copies three palettes $9B/816F A2 20 01 LDX #$0120 $9B/8172 A0 30 00 LDY #$0030 $9B/8175 BD 4B 12 LDA $124B,x $9B/8178 9D CB 12 STA $12CB,x $9B/817B E8 INX $9B/817C E8 INX $9B/817D 88 DEY $9B/817E D0 F5 BNE $F5 ; [$8175] $9B/8180 E2 20 SEP #$20 $9B/8182 A9 01 LDA #$01 ; Set flag for CGRAM update $9B/8184 8D 49 12 STA $1249 $9B/8187 7A PLY ; Restore all the buffered registers $9B/8188 84 2A STY $2A $9B/818A 7A PLY $9B/818B 84 28 STY $28 $9B/818D 7A PLY $9B/818E 84 26 STY $26 $9B/8190 7A PLY $9B/8191 84 24 STY $24 $9B/8193 7A PLY $9B/8194 84 22 STY $22 $9B/8196 7A PLY $9B/8197 84 20 STY $20 $9B/8199 7A PLY $9B/819A 84 0E STY $0E $9B/819C 7A PLY $9B/819D 84 0C STY $0C $9B/819F 7A PLY $9B/81A0 84 0A STY $0A $9B/81A2 7A PLY $9B/81A3 84 08 STY $08 $9B/81A5 7A PLY $9B/81A6 84 06 STY $06 $9B/81A8 7A PLY $9B/81A9 84 04 STY $04 $9B/81AB 7A PLY $9B/81AC 84 02 STY $02 $9B/81AE 7A PLY $9B/81AF 84 00 STY $00 $9B/81B1 7A PLY ; Restore Y, X, Program Bank $9B/81B2 FA PLX $9B/81B3 AB PLB $9B/81B4 6B RTL
$9B/9BA5 (Decompress and) Transfer graphic data sets to VRAM
At $9B/9C17 ($000D:9C17) is an address table. When this subroutine gets called, A contains an entry number for this address table. The corresponding address is loaded. The data there is a chain of different "graphic sets" that are transfered here. The data's first value (16 bit) can be negative or positive:
If negative, this is a standard VRAM DMA.
The first two byte are the VRAM destination (MSB gets removed) the next three bytes are the 24 bit address of the graphic data in the ROM the last two byte are the 16 bit value of how many bytes are to be transfered
If the first value is positive, the data has to be decompressed before it gets transfered to VRAM by DMA.
(as before) The first two byte are the VRAM destination (as before) the next three bytes are the 24 bit address of the COMPRESSED graphic data in the ROM the last three bytes are the 24-bit-address where to temp store the decompressed data
If positive, it is not necessary to add the size of the data, because that is already part of the compressed data
This stuff gets executed when you start a new game, screwing this up removes the script from the text boxes, so I can imagine this is for the whole Kanji sets / Hiragana / Katakana.
$9B/9BA5 8B PHB ; Preserve Program Bank on stack $9B/9BA6 4B PHK ; Change Program Bank $9B/9BA7 AB PLB $9B/9BA8 C2 20 REP #$20 $9B/9BAA 29 FF 00 AND #$00FF ; The value that was in A at the start is an index for a Table $9B/9BAD 0A ASL A ; It gets multiplied by 2 and transfered in Y... $9B/9BAE A8 TAY $9B/9BAF B9 17 9C LDA $9C17,y ; ... and the table value gets loaded $9B/9BB2 A8 TAY ; The value itself is an address... $9B/9BB3 B9 00 00 LDA $0000,y ; ... from which we load data $9B/9BB6 30 33 BMI $33 ; [$9BEB] Branch if the loaded data is between #$8000-#$FFFF $9B/9BB8 5A PHY ; IF POSITIVE: Push the address that was loaded at the very beginning on stack $9B/9BB9 48 PHA ; Put the secondly loaded value on stack, too $9B/9BBA E2 20 SEP #$20 $9B/9BBC BE 05 00 LDX $0005,y ; Set up the temp store address of the decompressed data in $20-$22 $9B/9BBF B9 07 00 LDA $0007,y $9B/9BC2 86 20 STX $20 $9B/9BC4 85 22 STA $22 $9B/9BC6 C9 7E CMP #$7E ; Branch if the Temp Address isn't $7E/2000 $9B/9BC8 D0 0E BNE $0E ; [$9BD8] $9B/9BCA E0 00 20 CPX #$2000 $9B/9BCD D0 09 BNE $09 ; [$9BD8] $9B/9BCF AD 6A 05 LDA $056A ; $2100 Buffer (FBLANK / Screen Brightness) $9B/9BD2 30 04 BMI $04 ; [$9BD8] Branch if FBLANK is active
Code is missing here
$9B/9BD8 BE 02 00 LDX $0002,y ; Load the Address of the Compressed Data $9B/9BDB B9 04 00 LDA $0004,y ; Load the Bank of the Compressed Data $9B/9BDE 7A PLY ; Restore VRAM Address $9B/9BDF 22 7B 9E 80 JSL $809E7B ; Decompress Data and transfer it to VRAM $9B/9BE3 C2 21 REP #$21 ; A = 16 bit, clear carry $9B/9BE5 68 PLA ; Load the address from the address table $9B/9BE6 69 08 00 ADC #$0008 ; Add 8 (next entry) $9B/9BE9 80 C7 BRA $C7 ; [$9BB2] Loop, do the next entry in this list $9B/9BEB C9 FF FF CMP #$FFFF ; Is the loaded data #$FFFF? $9B/9BEE F0 23 BEQ $23 ; [$9C13] Exit if it is $9B/9BF0 5A PHY ; Push the address that was loaded at the very beginning on stack $9B/9BF1 29 FF 7F AND #$7FFF ; Remove the MSB from the secondly loaded data $9B/9BF4 48 PHA ; And throw it on stack $9B/9BF5 E2 20 SEP #$20 ; Now, a VRAM DMA is built $9B/9BF7 A9 80 LDA #$80 ; These are VRAM transfer settings (for $2115) $9B/9BF9 85 0E STA $0E $9B/9BFB BE 05 00 LDX $0005,y ; Loaded Data Address + 5 contains the number of bytes to be transfered (16 bit value) $9B/9BFE 86 0C STX $0C $9B/9C00 BE 02 00 LDX $0002,y ; Loaded Data Address + 2 contains the DMA Source Address (16 bit, of course) $9B/9C03 B9 04 00 LDA $0004,y ; Loaded Data Address + 4 contains the DMA Source Bank (8 bit) $9B/9C06 7A PLY ; The modified loaded data value is the VRAM destination address $9B/9C07 22 24 9F 80 JSL $809F24 ; VRAM DMA $9B/9C0B C2 21 REP #$21 ; A = 16 bit, clear carry $9B/9C0D 68 PLA ; Load the address from the address table $9B/9C0E 69 07 00 ADC #$0007 ; Add 7 (next entry) $9B/9C11 80 9F BRA $9F ; [$9BB2] Loop, do the next entry in this list $9B/9C13 E2 20 SEP #$20 ; Restore everything and exit $9B/9C15 AB PLB $9B/9C16 6B RTL
$9B/9C17 Address Table for $9B/9BA5
$9B/9C17 31 9C Entry $00: $9C31 $9B/9C19 58 9C Entry $01: $9C58 $9B/9C1B 62 9C Entry $02: $9C62 $9B/9C1D 6B 9C Entry $03: $9C6B $9B/9C1F 31 9C Entry $04-$0C: The same as Entry $00 $9B/9C21 31 9C $9B/9C23 31 9C $9B/9C25 31 9C $9B/9C27 31 9C $9B/9C29 31 9C $9B/9C2B 31 9C $9B/9C2D 31 9C $9B/9C2F 31 9C
$9B/9C31 Graphic Set $00 for $9B/9BA5
$9B/9C31 00 C0 00 80 B7 00 04 ; B78000 These are Debug(???) Numbers and Symbols that are never seen(?) $9B/9C38 00 28 00 80 BF 00 20 7E $9B/9C40 00 2A DB 80 DA 00 20 7E $9B/9C48 00 30 D0 81 DA 00 20 7E
After this, the stuff for the next Graphic Set gets executed, too. Graphic Set 1 is a part of Graphic Set 0
$9B/9C50 Graphic Set $01 for $9B/9BA5
$9B/9C50 00 65 65 88 DA 00 20 7E $9B/9C58 00 61 58 97 DA 00 20 7E $9B/9C60 FF FF
$9B/9C62 Graphic Set $01 for $9B/9BA5
$9B/9C62 00 C0 00 80 B7 00 04 $9B/9C69 FF FF
$9B/9C6B Graphic Set $03 for $9B/9BA5
$9B/9C6B 00 65 65 88 DA 00 20 7E $9B/9C73 00 61 58 97 DA 00 20 7E $9B/9C7B 00 10 D0 81 DA 00 20 7E $9B/9C83 00 78 41 BE DB 00 20 7E $9B/9C8B 00 00 AB CA DB 00 20 7E $9B/9C93 00 50 9E F1 DB 00 20 7E $9B/9C9B C0 8F 74 EA 9B 80 00 $9B/9CA2 FF FF
Bank $9C
$9C/8B49 Jump Table for $05C0
$9C/8B49 AD C0 05 LDA $05C0 ; Load Jump Table Index $9C/8B4C EB XBA ; Fill the other byte of A with #$00 $9C/8B4D A9 00 LDA #$00 $9C/8B4F EB XBA ; Switch it back and multiply by 2 $9C/8B50 0A ASL A $9C/8B51 AA TAX ; Transfer in X $9C/8B52 7C 55 8B JMP ($8B55,x) ; Table is at $9C/8B55, jump to the entry
$9C/8BA7 ?
This is a program part that $9C/8B49 jumps to.
$9C/8BA7 22 70 A1 80 JSL $80A170 ; Long Jump to Disable IRQ $9C/8BAB 22 4A A1 80 JSL $80A14A ; Long Jump to Deactivate NMI, Auto Joypad, HDMAs $9C/8BAF 22 B6 A1 80 JSL $80A1B6 ; Write Executable Code in WRAM $9C/8BB3 A9 30 LDA #$30 ; Write HBLANK/VBLANK IRQ activation bits in $4200 Buffer $9C/8BB5 1C AF 05 TRB $05AF $9C/8BB8 A9 FF LDA #$FF ; ??? (Sound related?) $9C/8BBA 85 F5 STA $F5 $9C/8BBC 20 DE 9C JSR $9CDE ; Wait to the end of HBLANK, then FBLANK $9C/8BBF 20 E7 BD JSR $BDE7 [$9C:BDE7] A:A180 X:05ED Y:0000 P:eNVMxdizc $9C/8BC2 AD 9D 17 LDA $179D [$9C:179D] A:0000 X:0000 Y:0000 P:envMxdiZC $9C/8BC5 D0 03 BNE $03 [$8BCA] A:0000 X:0000 Y:0000 P:envMxdiZC $9C/8BC7 20 91 C5 JSR $C591 [$9C:C591] A:0000 X:0000 Y:0000 P:envMxdiZC $9C/8BCA 64 36 STZ $36 [$00:0036] A:0000 X:0000 Y:0000 P:envMxdiZC $9C/8BCC 9C C7 0E STZ $0EC7 [$9C:0EC7] A:0000 X:0000 Y:0000 P:envMxdiZC $9C/8BCF 9C C9 11 STZ $11C9 [$9C:11C9] A:0000 X:0000 Y:0000 P:envMxdiZC $9C/8BD2 9C CA 11 STZ $11CA [$9C:11CA] A:0000 X:0000 Y:0000 P:envMxdiZC $9C/8BD5 22 98 C5 9C JSL $9CC598[$9C:C598] A:0000 X:0000 Y:0000 P:envMxdiZC $9C/8BD9 64 C1 STZ $C1 [$00:00C1] A:0020 X:0004 Y:0000 P:envMxdiZC $9C/8BDB A2 00 20 LDX #$2000 A:0020 X:0004 Y:0000 P:envMxdiZC $9C/8BDE 86 5A STX $5A [$00:005A] A:0020 X:2000 Y:0000 P:envMxdizC $9C/8BE0 86 5C STX $5C [$00:005C] A:0020 X:2000 Y:0000 P:envMxdizC $9C/8BE2 A2 00 A8 LDX #$A800 A:0020 X:2000 Y:0000 P:envMxdizC $9C/8BE5 86 5E STX $5E [$00:005E] A:0020 X:A800 Y:0000 P:eNvMxdizC $9C/8BE7 C2 20 REP #$20 A:0020 X:A800 Y:0000 P:eNvMxdizC $9C/8BE9 A9 00 00 LDA #$0000 A:0020 X:A800 Y:0000 P:eNvmxdizC $9C/8BEC 8F 05 43 00 STA $004305[$00:4305] A:0000 X:A800 Y:0000 P:envmxdiZC $9C/8BF0 E2 20 SEP #$20 A:0000 X:A800 Y:0000 P:envmxdiZC $9C/8BF2 A9 9C LDA #$9C A:0000 X:A800 Y:0000 P:envMxdiZC $9C/8BF4 A2 58 92 LDX #$9258 A:009C X:A800 Y:0000 P:eNvMxdizC $9C/8BF7 A0 00 00 LDY #$0000 A:009C X:9258 Y:0000 P:eNvMxdizC $9C/8BFA 22 81 9D 80 JSL $809D81 ; Long Jump to VRAM Clear $9C/8BFE 22 D2 9C 9C JSL $9C9CD2[$9C:9CD2] A:0001 X:9258 Y:0000 P:eNvMxdizC $9C/8C02 D0 01 BNE $01 [$8C05] A:0000 X:9258 Y:0000 P:envMxdiZC $9C/8C04 1A INC A A:0000 X:9258 Y:0000 P:envMxdiZC $9C/8C05 8F 02 42 00 STA $004202[$00:4202] A:0001 X:9258 Y:0000 P:envMxdizC $9C/8C09 A9 22 LDA #$22 A:0001 X:9258 Y:0000 P:envMxdizC $9C/8C0B 22 4F FD 85 JSL $85FD4F[$85:FD4F] A:0022 X:9258 Y:0000 P:envMxdizC $9C/8C0F 8F 03 42 00 STA $004203[$00:4203] A:00A0 X:9258 Y:0000 P:eNvMxdizc $9C/8C13 A0 57 9B LDY #$9B57 A:00A0 X:9258 Y:0000 P:eNvMxdizc $9C/8C16 20 15 9B JSR $9B15 ; Decompress Data and transfer it to VRAM in a Row $9C/8C19 20 7B 9C JSR $9C7B [$9C:9C7B] A:FF80 X:FFFF Y:9BAF P:envMxdiZC $9C/8C1C A9 80 LDA #$80 ; VRAM settings ($2115) $9C/8C1E 85 0E STA $0E $9C/8C20 A0 00 00 LDY #$0000 ; VRAM Destination $9C/8C23 A2 00 14 LDX #$1400 ; Number of Bytes to transfer $9C/8C26 86 0C STX $0C $9C/8C28 A2 00 20 LDX #$2000 ; VRAM DMA Source Address: $7E/2000 $9C/8C2B A9 7E LDA #$7E $9C/8C2D 22 24 9F 80 JSL $809F24 ; Long Jump to VRAM: $7E/2000 to $0000 VRAM
$9C/8C31 Quest Logo?
A lot of loading, some Mode 7 stuff
$9C/8C31 C2 20 REP #$20 $9C/8C33 7B TDC ; Clear 16-bit A $9C/8C34 AA TAX ; Clear X $9C/8C35 A0 A0 00 LDY #$00A0 $9C/8C38 BF 47 A0 CB LDA $CBA047,x ; Transfer the palettes for the whole manufacturer's logo intro... $9C/8C3C 9D 4B 12 STA $124B,x ; ... to the CGRAM buffer $9C/8C3F 9D 4B 14 STA $144B,x ; ... and a second CGRAM buffer? $9C/8C42 E8 INX $9C/8C43 E8 INX $9C/8C44 88 DEY $9C/8C45 D0 F1 BNE $F1 ; [$8C38] $9C/8C47 E2 20 SEP #$20 $9C/8C49 A9 09 LDA #$09 ; BG Mode 1 $9C/8C4B 8D 05 21 STA $2105 $9C/8C4E 8D 89 05 STA $0589 ; Update Buffer register, too $9C/8C51 A9 1C LDA #$1C ; BG Tilemap 1 is at $1C00 in VRAM $9C/8C53 8D 07 21 STA $2107 $9C/8C56 8D 8B 05 STA $058B ; Update Buffer register, too $9C/8C59 A9 14 LDA #$14 ; BG Tilemap 2 is at $1400 in VRAM $9C/8C5B 8D 08 21 STA $2108 $9C/8C5E 8D 8C 05 STA $058C ; Update Buffer register, too $9C/8C61 A9 1C LDA #$1C ; BG Tilemap 3 is at $1C00 in VRAM $9C/8C63 8D 09 21 STA $2109 $9C/8C66 8D 8D 05 STA $058D ; Update Buffer register, too $9C/8C69 A9 02 LDA #$02 ; Sprite size 8x8 and 64x64 $9C/8C6B 8D 88 05 STA $0588 ; Store only buffer $9C/8C6E A9 35 LDA #$35 ; BG1 Tiles at $3000, BG2 Tiles at $5000 $9C/8C70 8D 0B 21 STA $210B $9C/8C73 8D 8F 05 STA $058F ; Update Buffer register, too $9C/8C76 9C 0C 21 STZ $210C ; BG3/4 Tiles at $0000 $9C/8C79 9C 90 05 STZ $0590 ; Update Buffer register, too $9C/8C7C A9 02 LDA #$02 ; Only BG2 on Main Screen $9C/8C7E 8D 2C 21 STA $212C $9C/8C81 8D A6 05 STA $05A6 ; Update Buffer register, too $9C/8C84 9C 2D 21 STZ $212D ; Nothing on Subscreen $9C/8C87 9C A7 05 STZ $05A7 ; Update Buffer register, too $9C/8C8A A9 05 LDA #$05 ; BG3 Window Mask Designation on Main Screen $9C/8C8C 8D A8 05 STA $05A8 ; Update Buffer register, too $9C/8C8F 8D 2E 21 STA $212E $9C/8C92 9C A9 05 STZ $05A9 ; Update Buffer register, too $9C/8C95 9C 2F 21 STZ $212F ; No Window Mask Designation on Subscreen $9C/8C98 A9 02 LDA #$02 ; ??? $9C/8C9A 8D AA 05 STA $05AA $9C/8C9D A9 E0 LDA #$E0 $9C/8C9F 8D AC 05 STA $05AC ; ??? $9C/8CA2 8D AD 05 STA $05AD ; ??? $9C/8CA5 8D AE 05 STA $05AE ; ??? $9C/8CA8 9C 8A 05 STZ $058A ; $212E buffer. Window Mask Designation for Main Screen $9C/8CAB A2 68 97 LDX #$9768 ; Window 1 Left/Right Position $9C/8CAE 8E 26 21 STX $2126 $9C/8CB1 A2 03 03 LDX #$0303 ; Enable Window 1 and Window 1 Inversion for BG1/3 $9C/8CB4 8E 23 21 STX $2123 $9C/8CB7 A9 30 LDA #$30 ; Enable Window 1 and Window 1 Inversion for Color $9C/8CB9 8D 25 21 STA $2125 $9C/8CBC A9 26 LDA #$26 ; ??? $9C/8CBE 8D AB 05 STA $05AB $9C/8CC1 A9 01 LDA #$01 ; Set the Flag for CGRAM Update $9C/8CC3 8D 49 12 STA $1249 $9C/8CC6 7B TDC ; Clear 16-bit A $9C/8CC7 AA TAX ; Clear X $9C/8CC8 8E 91 05 STX $0591 ; ??? $9C/8CCB 8E 93 05 STX $0593 ; ??? $9C/8CCE 8E 97 05 STX $0597 ; ??? $9C/8CD1 CA DEX ; X = #$FFFF $9C/8CD2 8E 9B 05 STX $059B ; ??? $9C/8CD5 A2 04 00 LDX #$0004 $9C/8CD8 8E 95 05 STX $0595 ; ??? $9C/8CDB 9C B0 05 STZ $05B0 ; HDMA Activation Flag Buffer? $9C/8CDE A9 42 LDA #$42 ; HDMA Addressing Mode, 1 register write twice $9C/8CE0 8D 10 43 STA $4310 $9C/8CE3 8D 20 43 STA $4320 $9C/8CE6 A9 1B LDA #$1B ; First HDMA Destination: $211B (Mode 7 Matrix A) $9C/8CE8 8D 11 43 STA $4311 $9C/8CEB A9 1E LDA #$1E ; First HDMA Destination: $211E (Mode 7 Matrix D) $9C/8CED 8D 21 43 STA $4321 $9C/8CF0 A2 11 9B LDX #$9B11 ; HDMA Source address for both: $9C/9B11 -(000E:1B11) $9C/8CF3 8E 12 43 STX $4312 $9C/8CF6 8E 22 43 STX $4322 $9C/8CF9 A9 9C LDA #$9C $9C/8CFB 8D 14 43 STA $4314 $9C/8CFE 8D 24 43 STA $4324 $9C/8D01 A9 00 LDA #$00 ; Both HDMA Indirect addresses are on Bank $00 $9C/8D03 8D 17 43 STA $4317 $9C/8D06 8D 27 43 STA $4327 $9C/8D09 A9 00 LDA #$00 ; Mode 7 Settings $9C/8D0B 8D 1A 21 STA $211A $9C/8D0E 9C 1B 21 STZ $211B ; Mode 7 Matrix A $9C/8D11 A9 01 LDA #$01 $9C/8D13 8D 1B 21 STA $211B $9C/8D16 9C 1C 21 STZ $211C ; Mode 7 Matrix B $9C/8D19 9C 1C 21 STZ $211C $9C/8D1C 9C 1D 21 STZ $211D ; Mode 7 Matrix C $9C/8D1F 9C 1D 21 STZ $211D $9C/8D22 A9 01 LDA #$01 $9C/8D24 9C 1E 21 STZ $211E ; Mode 7 Matrix D $9C/8D27 8D 1E 21 STA $211E $9C/8D2A A9 80 LDA #$80 $9C/8D2C 8D 1F 21 STA $211F ; Mode 7 Center X $9C/8D2F 9C 1F 21 STZ $211F $9C/8D32 A9 58 LDA #$58 $9C/8D34 8D 20 21 STA $2120 ; Mode 7 Center X $9C/8D37 9C 20 21 STZ $2120 $9C/8D3A C2 20 REP #$20 $9C/8D3C A2 00 02 LDX #$0200 ; Write "$E000" at $7E/0100 for $200 byte - this clears OAM Buffer 1's Low Table $9C/8D3F A0 00 01 LDY #$0100 $9C/8D42 A9 00 E0 LDA #$E000 $9C/8D45 22 C8 9D 80 JSL $809DC8 $9C/8D49 A2 00 02 LDX #$0200 ; Write "$E000" at $7E/0320 for $200 byte - this clears OAM Buffer 2's Low Table $9C/8D4C A0 20 03 LDY #$0320 $9C/8D4F A9 00 E0 LDA #$E000 $9C/8D52 22 C8 9D 80 JSL $809DC8 $9C/8D56 A2 20 00 LDX #$0020 ; Write "$0000" at $7E/0300 for $20 byte - this clears OAM Buffer 1's High Table $9C/8D59 A0 00 03 LDY #$0300 $9C/8D5C A9 00 00 LDA #$0000 $9C/8D5F 22 C8 9D 80 JSL $809DC8 $9C/8D63 A2 20 00 LDX #$0020 ; Write "$0000" at $7E/0520 for $20 byte - this clears OAM Buffer 2's High Table $9C/8D66 A0 20 05 LDY #$0520 $9C/8D69 A9 00 00 LDA #$0000 $9C/8D6C 22 C8 9D 80 JSL $809DC8 $9C/8D70 7B TDC ; Clear 16-bit A $9C/8D71 AA TAX ; Clear X $9C/8D72 BF 9A DD 9C LDA $9CDD9A,x ; Transfer Data from ROM to WRAM $9C/8D76 9D 00 01 STA $0100,x ; This is for a OAM Low Table $9C/8D79 E8 INX $9C/8D7A E8 INX $9C/8D7B E0 08 01 CPX #$0108 $9C/8D7E D0 F2 BNE $F2 ; [$8D72] $9C/8D80 E2 20 SEP #$20 $9C/8D82 7B TDC ; Clear 16-bit A $9C/8D83 AA TAX ; Clear X $9C/8D84 BF 74 DD 9C LDA $9CDD74,x ; Transfer Data from ROM to WRAM $9C/8D88 9D 00 03 STA $0300,x ; This is for a OAM Hi Table $9C/8D8B E8 INX $9C/8D8C E0 11 00 CPX #$0011 $9C/8D8F D0 F3 BNE $F3 ; [$8D84] $9C/8D91 A2 00 01 LDX #$0100 ; OAM Buffer is at $0100 $9C/8D94 8E 45 05 STX $0545 $9C/8D97 A9 01 LDA #$01 ; Update OAM $9C/8D99 8D 40 05 STA $0540 $9C/8D9C A9 7F LDA #$7F ; Data Bank = $7F $9C/8D9E 48 PHA $9C/8D9F AB PLB $9C/8DA0 C2 20 REP #$20 $9C/8DA2 A2 00 80 LDX #$8000 ; Write "$001F" at $7F/0000 to $7F/7FFF $9C/8DA5 A0 00 00 LDY #$0000 $9C/8DA8 A9 1F 00 LDA #$001F $9C/8DAB 22 C8 9D 80 JSL $809DC8 $9C/8DAF E2 20 SEP #$20 ; This line could be removed? (If nothing ever jumps to $9C/8DB3) $9C/8DB1 4B PHK ; This line could be removed? $9C/8DB2 AB PLB ; This line could be removed? $9C/8DB3 A9 7F LDA #$7F ; This line could be removed? $9C/8DB5 48 PHA ; This line could be removed? $9C/8DB6 AB PLB ; This line could be removed? $9C/8DB7 C2 20 REP #$20 ; This line could be removed? $9C/8DB9 A2 00 60 LDX #$6000 ; Write "$0000" at $7F/A000 to $7F/FFFF $9C/8DBC A0 00 A0 LDY #$A000 $9C/8DBF A9 00 00 LDA #$0000 $9C/8DC2 22 C8 9D 80 JSL $809DC8 $9C/8DC6 E2 20 SEP #$20 $9C/8DC8 4B PHK ; Set Data Bank to $9C $9C/8DC9 AB PLB $9C/8DCA A9 85 LDA #$85 ; Data Address of colors for several palettes $85/B170 $9C/8DCC 85 22 STA $22 $9C/8DCE A2 70 B1 LDX #$B170 $9C/8DD1 86 20 STX $20 $9C/8DD3 20 AB 9C JSR $9CAB ; Replace three colors in several palettes $9C/8DD6 A9 CA LDA #$CA ; Set up address for transfer loop: $CA/BD25 $9C/8DD8 85 22 STA $22 $9C/8DDA A2 25 BD LDX #$BD25 $9C/8DDD 86 20 STX $20 $9C/8DDF 7B TDC ; Clear 16-bit A $9C/8DE0 AA TAX ; Clear X $9C/8DE1 A8 TAY ; Clear Y $9C/8DE2 A9 20 LDA #$20 ; Set up transfer loop counter $9C/8DE4 85 00 STA $00 $9C/8DE6 B7 20 LDA [$20],y ; ??? $9C/8DE8 9F 00 00 7F STA $7F0000,x ; ??? $9C/8DEC C8 INY $9C/8DED C6 00 DEC $00 $9C/8DEF D0 0E BNE $0E ; [$8DFF] $9C/8DFF E8 INX $9C/8E00 E8 INX $9C/8E01 C0 A0 01 CPY #$01A0 $9C/8E04 D0 E0 BNE $E0 ; [$8DE6] $9C/8DF1 C2 20 REP #$20 $9C/8DF3 8A TXA ; ??? $9C/8DF4 18 CLC ; ??? $9C/8DF5 69 C0 00 ADC #$00C0 ; ??? $9C/8DF8 AA TAX ; ??? $9C/8DF9 E2 20 SEP #$20 $9C/8DFB A9 20 LDA #$20 ; ??? $9C/8DFD 85 00 STA $00 ; ??? $9C/8E06 A9 00 LDA #$00 ; ??? $9C/8E08 22 03 80 8F JSL $8F8003 ; ??? $9C/8E0C A9 20 LDA #$20 ; ??? $9C/8E0E 22 03 80 8F JSL $8F8003 ; ??? $9C/8E12 64 E7 STZ $E7 ; ??? $9C/8E14 9C 9C 17 STZ $179C ; ??? $9C/8E17 9C E6 1E STZ $1EE6 ; ??? $9C/8E1A 7B TDC ; ??? $9C/8E1B AA TAX ; ??? $9C/8E1C 8E 61 00 STX $0061 ; ??? $9C/8E1F 8E 63 00 STX $0063 ; ??? $9C/8E22 8E 65 00 STX $0065 ; ??? $9C/8E25 8F 28 B2 7E STA $7EB228 ; ??? $9C/8E29 8F 29 B2 7E STA $7EB229 ; ??? $9C/8E2D 8F A9 B2 7E STA $7EB2A9 ; ??? $9C/8E31 EE C0 05 INC $05C0 ; ??? $9C/8E34 A9 00 LDA #$00 ; Deactivate FBLANK, Screen Brightness = 0% $9C/8E36 8D 00 21 STA $2100 $9C/8E39 8D 87 05 STA $0587 ; Update Buffer register, too $9C/8E3C 8D 6A 05 STA $056A ; Update (second?) Buffer register, too $9C/8E3F 22 27 A1 80 JSL $80A127 ; ??? $9C/8E43 A9 81 LDA #$81 ; Activate NMI and Auto-Joypad Read $9C/8E45 0C AF 05 TSB $05AF ; Store in Buffer $9C/8E48 60 RTS
$9C/9053 Transfer colors to CGRAM buffer
This transfers colors to the CGRAM buffer and sets the flag that CGRAM gets updated the next time
A contains the number of Colors (number of 16-bit-values!) to transfer
X contains the Index where to store in the CGRAM buffer
$20-$22 contain the Load Address.
$9C/9053 85 00 STA $00 ; Carried in A value is the counter value for the transfer $9C/9055 64 01 STZ $01 ; Clear upper Byte of the counter $9C/9057 7B TDC ; Clear 16 bit A $9C/9058 A8 TAY ; Clear Y $9C/9059 C2 20 REP #$20 $9C/905B B7 20 LDA [$20],y ; Transfer data from address $9C/905D 9D 4B 12 STA $124B,x ; Store CGRAM buffer $9C/9060 C8 INY ; Increment Load index $9C/9061 C8 INY $9C/9062 E8 INX ; Increment Store index $9C/9063 E8 INX $9C/9064 C6 00 DEC $00 ; Decrement Loop counter $9C/9066 D0 F3 BNE $F3 ; [$905B] $9C/9068 E2 20 SEP #$20 $9C/906A A9 01 LDA #$01 ; Set Flag for CGRAM Update $9C/906C 8D 49 12 STA $1249 $9C/906F 60 RTS
$9C/9234 ?
I don't know if this subroutine starts here, just for a quick note
$9C/9234 A9 21 LDA #$21 A:00FF X:001A Y:01A1 P:envMxdiZC $9C/9236 22 03 80 8F JSL $8F8003[$8F:8003] A:0021 X:001A Y:01A1 P:envMxdizC
The "$21" is the sound that gets played when the soldier hits the archeress in the intro demo
$9C/98A1 Title Screen BG1 Tilemap builder
This builds the BG1 tilemap for the TO start screen in WRAM at $7F:E000
$9C/98A1 A9 7F LDA #$7F ; Setup 24-bit Address in $20: $7F:E000 $9C/98A3 85 22 STA $22 $9C/98A5 A2 00 E0 LDX #$E000 $9C/98A8 86 20 STX $20 $9C/98AA 7B TDC ; Clear 16-bit A $9C/98AB AA TAX ; Clear X $9C/98AC A8 TAY ; Clear Y $9C/98AD BF 25 BD CA LDA $CABD25,x ; This loads the Low byte of the Tilemap from the ROM $9C/98B1 EB XBA $9C/98B2 A9 32 LDA #$32 ; This adds the Tilemap high byte of #$32 $9C/98B4 EB XBA $9C/98B5 C2 20 REP #$20 ; A = 16 bit $9C/98B7 97 20 STA [$20],y ; This now stores both bytes in WRAM $9C/98B9 E2 20 SEP #$20 ; A = 8 bit $9C/98BB C8 INY ; Increment the index registers $9C/98BC C8 INY $9C/98BD E8 INX $9C/98BE E0 A0 01 CPX #$01A0 $9C/98C1 D0 EA BNE $EA ; [$98AD]
THis transers some palettes to the CGRAM buffer. These are the palettes that are used in the intro sequence where the text appears on the cloudy sky.
$9C/98C3 A9 CB LDA #$CB ; Data Address of a palette: $CB/A047 (= $0025:A047) $9C/98C5 85 22 STA $22 $9C/98C7 A2 47 A0 LDX #$A047 $9C/98CA 86 20 STX $20 $9C/98CC A9 10 LDA #$10 ; Transfer #$10 Colors $9C/98CE A2 80 00 LDX #$0080 ; Transfer it as the palette no. 0 for sprites $9C/98D1 20 53 90 JSR $9053 ; Transfer Data into the CGRAM Buffer $9C/98D4 A9 20 LDA #$20 ; Transfer the #$20 Colors after that $9C/98D6 A2 00 00 LDX #$0000 ; And set them as BG palettes $9C/98D9 20 53 90 JSR $9053 ; Transfer Data into the CGRAM Buffer $9C/98DC A9 08 LDA #$08 ; Transfer half an palette $9C/98DE A2 A0 00 LDX #$00A0 ; Somethere in the sprite palette department $9C/98E1 20 53 90 JSR $9053 ; Transfer Data into the CGRAM Buffer $9C/98E4 A9 CB LDA #$CB ; Reset the address to $CB/A047 as before $9C/98E6 85 22 STA $22 $9C/98E8 A2 47 A0 LDX #$A047 $9C/98EB 86 20 STX $20 $9C/98ED A9 10 LDA #$10 ; Transfer #$10 Colors (which should be an all-pitchblack palette) $9C/98EF A2 20 00 LDX #$0020 ; Set it as third BG palette $9C/98F2 20 53 90 JSR $9053 ; Transfer Data into the CGRAM Buffer
$9C/98F5 A2 FE 01 LDX #$01FE ; ??? $9C/98F8 8E 91 05 STX $0591 ; ??? $9C/98FB A2 FF 01 LDX #$01FF ; ??? $9C/98FE 8E 93 05 STX $0593 ; ??? $9C/9901 A9 03 LDA #$03 ; BG1 Tiles are at $3000 in VRAM (BG2 Tiles at $0000) $9C/9903 8D 8F 05 STA $058F ; Store in Buffer register $9C/9906 A9 11 LDA #$11 ; BG3/4 Tiles are at $1000 in VRAM $9C/9908 8D 90 05 STA $0590 ; Store in Buffer register $9C/990B A9 70 LDA #$70 ; BG1 Tilemap at $7000 in VRAM $9C/990D 8D 8B 05 STA $058B ; Store in Buffer register $9C/9910 A9 01 LDA #$01 ; Show BG1 on Main Screen $9C/9912 8D A6 05 STA $05A6 ; Store in Buffer register $9C/9915 A9 29 LDA #$29 ; Mode 1 + BG3 priority, BG2 with big Tiles $9C/9917 8D 89 05 STA $0589 ; Store in Buffer register $9C/991A A9 80 LDA #$80 ; Settings for $2115 for the upcoming VRAM DMA $9C/991C 85 0E STA $0E $9C/991E A0 00 70 LDY #$7000 ; VRAM destination: $7000 (BG1 Tilemap) $9C/9921 A2 40 03 LDX #$0340 ; Transfer $0340 Bytes $9C/9924 86 0C STX $0C $9C/9926 A2 00 E0 LDX #$E000 ; Source Address: $7F/E000 $9C/9929 A9 7F LDA #$7F $9C/992B 22 24 9F 80 JSL $809F24 ; Sets up and executes a DMA from $7F/E000 to VRAM $7000 $9C/992F 7B TDC ; Clear 16-bit A $9C/9930 AA TAX ; Clear X $9C/9931 8E 99 05 STX $0599 ; ??? $9C/9934 A9 78 LDA #$78 ; BG2 Tilemap at $7800 $9C/9936 8D 8C 05 STA $058C ; Store in Buffer register $9C/9939 A9 74 LDA #$74 ; BG3 Tilemap at $7400 $9C/993B 8D 8D 05 STA $058D ; Store in Buffer register $9C/993E A9 15 LDA #$15 ; Show BG1-3 + Sprites on Main Screen $9C/9940 8D A6 05 STA $05A6 ; Store in Buffer register $9C/9943 A9 02 LDA #$02 ; Show BG2 on Subscreen $9C/9945 8D A7 05 STA $05A7 ; Store in Buffer register $9C/9948 A9 04 LDA #$04 ; ??? $9C/994A 8D AB 05 STA $05AB ; ??? $9C/994D A9 10 LDA #$10 ; ??? $9C/994F 8D A6 17 STA $17A6 ; ??? $9C/9952 9C A7 17 STZ $17A7 ; ??? $9C/9955 A9 CB LDA #$CB ; Reset the address to $CB/A047 as before $9C/9957 85 22 STA $22 $9C/9959 A2 47 A0 LDX #$A047 $9C/995C 86 20 STX $20 $9C/995E A9 9C LDA #$9C ; Setup 24-bit addresss in $23: $9C/DEA2 $9C/9960 85 25 STA $25 $9C/9962 A2 A2 DE LDX #$DEA2 $9C/9965 86 23 STX $23 $9C/9967 22 14 AA 83 JSL $83AA14 ; ??? $9C/996B 9C 9C 17 STZ $179C ; ??? $9C/996E 9C 9D 17 STZ $179D ; ??? $9C/9971 EE C0 05 INC $05C0 ; ??? $9C/9974 60 RTS
$9C/9B15 Decompress Data and transfer it to VRAM in a Row
This subroutine decompresses and transfers data to VRAM and can do this in a row.
It has to receive the address of a list of data to do, this list has to be structured this way:
3 bytes - 24-bit address for the temp store of the decompressed data 3 bytes - 24-bit address of the compressed data 2 bytes - VRAM destination / VRAM DMA transfer leave-out flag
If as VRAM destination you have $8000, the VRAM DMA gets left out. If after any of these 8 byte entries there is a $FFFF, this subroutine gets exited.
When this subroutine is called, Y contains the address of the data list - the Data Bank has to be set to the list's bank.
$9C/9B15 B9 02 00 LDA $0002,y ; Load the 1st 3 bytes and set them as store address of the decomp subroutine $9C/9B18 85 22 STA $22 $9C/9B1A BE 00 00 LDX $0000,y $9C/9B1D 86 20 STX $20 $9C/9B1F C8 INY ; Increment the Load Index thrice $9C/9B20 C8 INY $9C/9B21 C8 INY $9C/9B22 B9 02 00 LDA $0002,y ; Load next three bytes - the address of the compressed data $9C/9B25 BE 00 00 LDX $0000,y $9C/9B28 C8 INY ; Increment the Load Index thrice $9C/9B29 C8 INY $9C/9B2A C8 INY $9C/9B2B 5A PHY ; Buffer Load Index on Stack $9C/9B2C 22 E5 F9 81 JSL $81F9E5 ; Decompress data $9C/9B30 7A PLY ; Restore Load Index $9C/9B31 A6 0E LDX $0E ; Load size of decompressed data... $9C/9B33 86 0C STX $0C ; ... set it as bytes to transfer $9C/9B35 A9 80 LDA #$80 ; VRAM settings ($2115) $9C/9B37 85 0E STA $0E $9C/9B39 BE 00 00 LDX $0000,y ; Load next two bytes (VRAM destination) $9C/9B3C C8 INY ; Increment the Load Index twice $9C/9B3D C8 INY $9C/9B3E 5A PHY ; Buffer Load Index on Stack $9C/9B3F 9B TXY ; Transfer VRAM destination to Y (for the upcoming VRAM DMA subroutine) $9C/9B40 C0 00 80 CPY #$8000 ; If "VRAM Destination" is $8000, leave out the VRAM DMA $9C/9B43 F0 08 BEQ $08 ; [$9B4D] $9C/9B45 A6 20 LDX $20 ; Pick up the decrompession address as source address for the VRAM DMA $9C/9B47 A5 22 LDA $22 $9C/9B49 22 24 9F 80 JSL $809F24 ; Long Jump to VRAM DMA $9C/9B4D 7A PLY ; Restore Load Index $9C/9B4E BE 00 00 LDX $0000,y ; Load next double byte $9C/9B51 E0 FF FF CPX #$FFFF ; Look if there is the End-signal $9C/9B54 D0 BF BNE $BF ; [$9B15] Loop if not $9C/9B56 60 RTS
$9C/9B57 Data List for $9C/9B15
This is a list of compressed data for the subroutine at $9C/9B15 to decompress and transfer to VRAM.
00 20 7E BB BF DF 00 10 ; Sky Tilemap 00 20 7E 53 BC DF 00 1C ; Intro Japanese text Tilemap 00 20 7E 63 B2 DF 00 70 ; Part of the Sky Tileset 00 20 7E 80 9F DF 00 60 ; Part of the Sky Tileset 00 20 7E EB 8B DF 00 50 ; Part of the Sky Tileset 00 20 7E 45 C5 DF 00 14 ; Quest Logo Tilemap 00 20 7E DC C5 DF 00 18 ; "Quest Presents" Tilemap 00 20 7E 6E C6 DF 00 0C ; Hermit Logo Tilemap 00 20 7E 07 E9 DE 00 30 ; Part of Intro Japanese text Tileset 00 40 7E 3B FD DE 00 40 ; Part of Intro Japanese text Tileset/Quest/Hermet/"Quest Presents" Tileset 00 94 7F 20 CD DF 00 80 ; ??? (Don't transfer to VRAM) FF FF
$9C/9C64 Screen fade in?
$9C/9C64 AD 87 05 LDA $0587 ; Check if Screen Brightness is on maximum or FBLANK is active $9C/9C67 C9 0F CMP #$0F $9C/9C69 90 01 BCC $01 ; [$9C6C] Exit if it is $9C/9C6B 60 RTS $9C/9C6C A9 01 LDA #$01 ; ??? $9C/9C6E 8D C2 05 STA $05C2 ; ??? (Some flag register) $9C/9C71 22 6A 8D 80 JSL $808D6A ; ??? Turn Brightness higher if not maximum $9C/9C75 22 8A A1 80 JSL $80A18A ; ??? Wait for NMI $9C/9C79 18 CLC $9C/9C7A 60 RTS
$9C/9C7B ?
This subroutine merges data in WRAM. This builds a tilemap, IIRC.
$9C/9C7B C2 20 REP #$20 ; 16 Bit A $9C/9C7D 7B TDC ; Clear A, X, Y $9C/9C7E AA TAX $9C/9C7F A8 TAY $9C/9C80 F4 00 7E PEA $7E00 ; Set Data Bank to $7E $9C/9C83 AB PLB $9C/9C84 AB PLB $9C/9C85 A9 08 00 LDA #$0008 A:0000 X:0000 Y:0000 P:envmxdizC $9C/9C88 85 00 STA $00 [$00:0000] A:0008 X:0000 Y:0000 P:envmxdizC $9C/9C8A BD 00 20 LDA $2000,x[$7E:2000] A:0008 X:0000 Y:0000 P:envmxdizC $9C/9C8D 1D 10 20 ORA $2010,x[$7E:2010] A:0000 X:0000 Y:0000 P:envmxdiZC $9C/9C90 99 00 20 STA $2000,y[$7E:2000] A:0000 X:0000 Y:0000 P:envmxdiZC $9C/9C93 E8 INX A:0000 X:0000 Y:0000 P:envmxdiZC $9C/9C94 E8 INX A:0000 X:0001 Y:0000 P:envmxdizC $9C/9C95 C8 INY A:0000 X:0002 Y:0000 P:envmxdizC $9C/9C96 C8 INY A:0000 X:0002 Y:0001 P:envmxdizC $9C/9C97 C6 00 DEC $00 [$00:0000] A:0000 X:0002 Y:0002 P:envmxdizC $9C/9C99 D0 EF BNE $EF [$9C8A] A:0000 X:0002 Y:0002 P:envmxdizC $9C/9C9B 8A TXA A:0000 X:0010 Y:0010 P:envmxdiZC $9C/9C9C 18 CLC A:0010 X:0010 Y:0010 P:envmxdizC $9C/9C9D 69 10 00 ADC #$0010 A:0010 X:0010 Y:0010 P:envmxdizc $9C/9CA0 AA TAX A:0020 X:0010 Y:0010 P:envmxdizc $9C/9CA1 C0 00 14 CPY #$1400 A:0020 X:0020 Y:0010 P:envmxdizc $9C/9CA4 D0 DF BNE $DF [$9C85] A:0020 X:0020 Y:0010 P:eNvmxdizc $9C/9CA6 4B PHK ; Set Data Bank to $9C $9C/9CA7 AB PLB $9C/9CA8 E2 20 SEP #$20 ; 8 Bit A $9C/9CAA 60 RTS
$9C/9CAB Replace three colors in several palettes
This subroutine replaces three colors in several palettes
$9C/9CAB A0 06 00 LDY #$0006 ; Set up the Loop Counter $9C/9CAE A2 42 01 LDX #$0142 ; Where to store in CGRAM buffer (sprite palettes) $9C/9CB1 A9 03 LDA #$03 ; Number of colors $9C/9CB3 5A PHY ; Push Y on the counter, because Y needs to be used in the upcoming Subroutine $9C/9CB4 DA PHX ; Buffer the start point where to store $9C/9CB5 20 53 90 JSR $9053 ; Transfer Data into the CGRAM Buffer $9C/9CB8 FA PLX ; Restore the start point where to store $9C/9CB9 7A PLY ; Restore loop counter $9C/9CBA 88 DEY ; Decrement counter $9C/9CBB F0 14 BEQ $14 ; [$9CD1] Exit if counter reached zero $9C/9CBD C2 20 REP #$20 $9C/9CBF A5 20 LDA $20 ; Load Data Source Address $9C/9CC1 18 CLC ; Increase the Address (6 bytes were transfered, so increase by 6) $9C/9CC2 69 06 00 ADC #$0006 $9C/9CC5 85 20 STA $20 ; Store back $9C/9CC7 8A TXA ; Add #$20 to the start point where to store - point at the next palette $9C/9CC8 18 CLC $9C/9CC9 69 20 00 ADC #$0020 $9C/9CCC AA TAX ; Transfer back to X $9C/9CCD E2 20 SEP #$20 $9C/9CCF 80 E0 BRA $E0 ; [$9CB1] $9C/9CD1 60 RTS
$9C/9CDE Wait to the end of HBLANK, then FBLANK
$9C/9CDE A9 80 LDA #$80 $9C/9CE0 2C 12 42 BIT $4212 $9C/9CE3 70 FB BVS $FB ; [$9CE0] Wait for a HBLANK to start $9C/9CE5 2C 12 42 BIT $4212 $9C/9CE8 50 FB BVC $FB ; [$9CE5] Wait for a HBLANK to end $9C/9CEA 8D 00 21 STA $2100 ; FBLANK $9C/9CED 8D 87 05 STA $0587 ; Update $2100 Buffer 1 $9C/9CF0 8D 6A 05 STA $056A ; Update $2100 Buffer 2 $9C/9CF3 9C 2C 21 STZ $212C ; Remove all Main Screen Designations $9C/9CF6 9C 2D 21 STZ $212D ; Remove all Subscreen Designations $9C/9CF9 60 RTS
$9C/C598 Test SRAM and store in it
$9C/C598 7B TDC ; Clear 16-bit A $9C/C599 AA TAX ; Clear X $9C/C59A BF CA C5 9C LDA $9CC5CA,x ; Transfer the ASCII-Code "#T-O" in SRAM $9C/C59E 9F 00 00 70 STA $700000,x $9C/C5A2 E8 INX $9C/C5A3 E0 04 00 CPX #$0004 $9C/C5A6 D0 F2 BNE $F2 ; [$C59A] $9C/C5A8 BF CA C5 9C LDA $9CC5CA,x ; Test if the ASCII-Code is in SRAM $9C/C5AC DF 00 00 70 CMP $700000,x $9C/C5B0 D0 07 BNE $07 [$C5B9] A:0043 X:0004 Y:0000 P:eNvMxdizc $9C/C5B2 E8 INX ; MANUALLY DISASSEMBLED LINE $9C/C5B3 E0 08 00 CPX #$0008 ; MANUALLY DISASSEMBLED LINE $9C/C5B6 D0 F0 BNE $F0 ; [$C5A8] MANUALLY DISASSEMBLED LINE $9C/C5B8 6B RTL ; MANUALLY DISASSEMBLED LINE $9C/C5B9 7B TDC A:0043 X:0004 Y:0000 P:eNvMxdizc $9C/C5BA AA TAX A:0000 X:0004 Y:0000 P:envMxdiZc $9C/C5BB BF D2 C5 9C LDA $9CC5D2,x[$9C:C5D2] A:0000 X:0000 Y:0000 P:envMxdiZc $9C/C5BF 9F 04 00 70 STA $700004,x[$70:0004] A:0047 X:0000 Y:0000 P:envMxdizc $9C/C5C3 E8 INX A:0047 X:0000 Y:0000 P:envMxdizc $9C/C5C4 E0 04 00 CPX #$0004 A:0047 X:0001 Y:0000 P:envMxdizc $9C/C5C7 D0 F2 BNE $F2 [$C5BB] A:0047 X:0001 Y:0000 P:eNvMxdizc $9C/C5C9 6B RTL A:0020 X:0004 Y:0000 P:envMxdiZC $9C/C5CA 23 54 2D 4F ASCII-Code for "#T-O" $9C/C5CE 43 4F 4D 50 ASCII-Code for "COMP" $9C/C5D2 47 52 45 20 ASCII-Code for "GRE "
$9C/C7D3 Stuff with the NES-Style Controller Registers
$9C/C7D3 08 PHP ; Push Flag Register $9C/C7D4 E2 20 SEP #$20 $9C/C7D6 A9 00 LDA #$00 ; Deactivate NMI and Auto-Joypad Read $9C/C7D8 8F 00 42 00 STA $004200 $9C/C7DC A9 01 LDA #$01 ; The NES-style Joypad Access... Doin' some latchin' $9C/C7DE 8F 16 40 00 STA $004016 $9C/C7E2 A9 00 LDA #$00 $9C/C7E4 8F 16 40 00 STA $004016 $9C/C7E8 85 00 STA $00 ; ??? $9C/C7EA 85 01 STA $01 ; ??? $9C/C7EC 85 02 STA $02 ; ??? $9C/C7EE 85 03 STA $03 ; ??? $9C/C7F0 A2 08 00 LDX #$0008 ; ??? $9C/C7F3 AF 17 40 00 LDA $004017 ; ??? $9C/C7F7 4A LSR A ; ??? $9C/C7F8 26 01 ROL $01 ; ??? $9C/C7FA CA DEX ; ??? $9C/C7FB D0 F6 BNE $F6 ; ??? $9C/C7FD A2 08 00 LDX #$0008 ; ??? $9C/C800 AF 17 40 00 LDA $004017 ; ??? $9C/C804 4A LSR A ; ??? $9C/C805 26 00 ROL $00 ; ??? $9C/C807 CA DEX ; ??? $9C/C808 D0 F6 BNE $F6 ; ??? $9C/C80A A2 08 00 LDX #$0008 ; ??? $9C/C80D AF 17 40 00 LDA $004017 ; ??? $9C/C811 4A LSR A ; ??? $9C/C812 26 02 ROL $02 ; ??? $9C/C814 CA DEX ; ??? $9C/C815 D0 F6 BNE $F6 ; ??? $9C/C817 A9 81 LDA #$81 ; Reactivate NMI and Auto Joypad Read $9C/C819 8F 00 42 00 STA $004200 $9C/C81D 28 PLP ; Restore Flag Register $9C/C81E 60 RTS
Bank $9D
$9D/9FE4 Clear BG3 Tilemap Buffer
This subroutine writes an empty tilemap for BG3 in WRAM. It writes at 7E/A800 "$03EE" for $800 bytes and transfers this to VRAM at $3C00, where the BG3 Tilemap in many/most of the cases is located. "$03EE" is of course an empty tile - "$0000" is used by some sprite tiles.
This is about the same as the subroutine at $82/B1DA, but the other one transfers this to VRAM in the same move, but this one only does the preparation for this in WRAM.
$9D/9FE4 8B PHB ; Buffer Data Bank Register on Stack $9D/9FE5 A9 7E LDA #$7E ; Set Data Bank to $7E $9D/9FE7 48 PHA $9D/9FE8 AB PLB $9D/9FE9 C2 20 REP #$20 $9D/9FEB A2 00 08 LDX #$0800 ; Write "$03EE" at $7E/A800 and onwards for #$0800 times $9D/9FEE A0 00 A8 LDY #$A800 $9D/9FF1 A9 EE 03 LDA #$03EE $9D/9FF4 22 C8 9D 80 JSL $809DC8 $9D/9FF8 E2 20 SEP #$20 A:03EE X:0000 Y:B000 P:envmxdiZc $9D/9FFA AB PLB ; Restore Data Bank $9D/9FFB 6B RTL
$9D/A998 ?
$9D/A998 8B PHB ; Buffer Data Bank Register on Stack $9D/A999 4B PHK ; Set Data Bank to $9D $9D/A99A AB PLB $9D/A99B 22 C4 F3 81 JSL $81F3C4 ; ??? $9D/A99F 22 4A A1 80 JSL $80A14A ; Deactivate NMI, Auto-Joypad and HDMAs $9D/A9A3 9C 36 00 STZ $0036 ; ??? $9D/A9A6 22 6B B6 80 JSL $80B66B ; Clear Registers, clear WRAM Bank $7F $9D/A9AA 22 45 B5 80 JSL $80B545 ; Clear Graphic Setup Registers $9D/A9AE 22 C5 B5 80 JSL $80B5C5 ; ??? Clears some values $9D/A9B2 22 B6 A1 80 JSL $80A1B6 ; Write Executable Code in WRAM $9D/A9B6 A9 01 LDA #$01 ; DEACTIVATE MASK WINDOWS $9D/A9B8 8F 26 21 00 STA $002126 ; Set Windows Left Positions to 1 $9D/A9BC 8F 28 21 00 STA $002128 $9D/A9C0 7B TDC ; Set Windows Right Positions to 0 $9D/A9C1 8F 27 21 00 STA $002127 $9D/A9C5 8F 29 21 00 STA $002129 $9D/A9C9 A9 00 LDA #$00 A:0000 X:05ED Y:0000 P:envMxdiZC $9D/A9CB 22 A5 9B 9B JSL $9B9BA5 ; (Decompress and) Transfer graphic data sets to VRAM $9D/A9CF A9 01 LDA #$01 A:FFFF X:0500 Y:9C60 P:eNvMxdizC $9D/A9D1 22 A5 9B 9B JSL $9B9BA5 ; (Decompress and) Transfer graphic data sets to VRAM $9D/A9D5 A9 03 LDA #$03 A:FFFF X:0500 Y:9C60 P:eNvMxdizC $9D/A9D7 85 A4 STA $A4 [$00:00A4] A:FF03 X:0500 Y:9C60 P:envMxdizC $9D/A9D9 A9 00 LDA #$00 A:FF03 X:0500 Y:9C60 P:envMxdizC $9D/A9DB 85 A5 STA $A5 [$00:00A5] A:FF00 X:0500 Y:9C60 P:envMxdiZC $9D/A9DD A9 00 LDA #$00 A:FF00 X:0500 Y:9C60 P:envMxdiZC $9D/A9DF 22 A4 9C 9B JSL $9B9CA4[$9B:9CA4] A:FF00 X:0500 Y:9C60 P:envMxdiZC $9D/A9E3 A2 00 00 LDX #$0000 A:1200 X:124B Y:0200 P:eNvMxdizc $9D/A9E6 8E 91 05 STX $0591 [$9D:0591] A:1200 X:0000 Y:0200 P:envMxdiZc $9D/A9E9 8E 93 05 STX $0593 [$9D:0593] A:1200 X:0000 Y:0200 P:envMxdiZc $9D/A9EC 8E 95 05 STX $0595 [$9D:0595] A:1200 X:0000 Y:0200 P:envMxdiZc $9D/A9EF 8E 97 05 STX $0597 [$9D:0597] A:1200 X:0000 Y:0200 P:envMxdiZc $9D/A9F2 8E 99 05 STX $0599 [$9D:0599] A:1200 X:0000 Y:0200 P:envMxdiZc $9D/A9F5 8E 9B 05 STX $059B [$9D:059B] A:1200 X:0000 Y:0200 P:envMxdiZc $9D/A9F8 9C 0C 42 STZ $420C ; Disable all HDMAs... $9D/A9FB 9C B0 05 STZ $05B0 ; ... and clear $420C buffer $9D/A9FE 22 00 80 86 JSL $868000[$86:8000] A:1200 X:0000 Y:0200 P:envMxdiZc $9D/AA02 A2 FF FF LDX #$FFFF A:FFFF X:FFFE Y:0200 P:eNvMxdizc $9D/AA05 8E 3D 00 STX $003D [$9D:003D] A:FFFF X:FFFF Y:0200 P:eNvMxdizc $9D/AA08 22 01 BE 9E JSL $9EBE01 ; Clear OAM Buffers $9D/AA0C 22 E4 9F 9D JSL $9D9FE4[$9D:9FE4] A:FF00 X:0100 Y:0020 P:envMxdizC $9D/AA10 22 36 E8 81 JSL $81E836[$81:E836] A:03EE X:0000 Y:B000 P:eNvMxdizc $9D/AA14 22 49 E8 81 JSL $81E849[$81:E849] A:03EE X:FFFF Y:B000 P:eNvMxdizc $9D/AA18 22 27 A1 80 JSL $80A127 ; Activate NMI and Auto-Joypad Read $9D/AA1C 22 62 A1 80 JSL $80A162 ; Enable VBLANK IRQ $9D/AA20 AB PLB ; Restore Bank $9D/AA21 6B RTL
$9D/AE67 Deactivate Mask Windows
This sets the left position of the Mask Windows to 1 and the right positions to 0, which deactivates the windows.
$9D/AE67 A9 01 LDA #$01 ; Set Windows Left Positions to 1 $9D/AE69 8F 26 21 00 STA $002126 $9D/AE6D 8F 28 21 00 STA $002128 $9D/AE71 7B TDC ; Set Windows Right Positions to 0 $9D/AE72 8F 27 21 00 STA $002127 $9D/AE76 8F 29 21 00 STA $002129 $9D/AE7A 6B RTL
Bank $9E
$9E/BE01 Long Jump to Clear OAM Buffers
$9E/BE01 20 05 BE JSR $BE05 ; Clear OAM Buffers $9E/BE04 6B RTL
$9E/BE05 Clear OAM Buffers
$9E/BE05 A0 00 00 LDY #$0000 ; Clear Low Tables $9E/BE08 A9 E8 LDA #$E8 ; This is the value that puts the sprites so low they're invisible $9E/BE0A 99 01 01 STA $0101,y $9E/BE0D 99 21 03 STA $0321,y $9E/BE10 C8 INY $9E/BE11 C8 INY $9E/BE12 C8 INY $9E/BE13 C8 INY $9E/BE14 C0 00 02 CPY #$0200 $9E/BE17 90 F1 BCC $F1 ; [$BE0A] $9E/BE19 A0 00 00 LDY #$0000 ; Clear High Tables $9E/BE1C A9 00 LDA #$00 $9E/BE1E 99 00 03 STA $0300,y $9E/BE21 99 20 05 STA $0520,y $9E/BE24 C8 INY $9E/BE25 C0 20 00 CPY #$0020 $9E/BE28 90 F4 BCC $F4 ; [$BE1E] $9E/BE2A A2 00 01 LDX #$0100 ; Set OAM Buffer address to $100 $9E/BE2D 8E 45 05 STX $0545 $9E/BE30 EE 40 05 INC $0540 ; Set Flag for OAM Buffers $9E/BE33 60 RTS
Bank $CB
$CB/A047 Palettes
$CB/A047-$CB/A066 - Empty Palette $CB/A067-$CB/A086 - Palette used in the intro for the manufacturer's logos and the intro $CB/A087-$CB/A0A6 - Palette used in the intro for the manufacturer's logos and the intro